Π . Н. Миронов¹, Д. А. Аничев^{1 \boxtimes}

Автоматизация учета геодезического оборудования и обработки заявок в GLPI: практическое руководство для инженеров

¹Сибирский государственный университет геосистем и технологий, г. Новосибирск, Российская Федерация e-mail: anichevdmitrij@@gmail.com

Аннотация. В современной геодезической отрасли эффективный учет оборудования и оперативная обработка заявок играют доминирующую роль в обеспечении эффективной работы инженеров. Данное руководство содержит информацию об автоматизации процессов учета с использованием системы GLPI — мощного инструмента для управления IT-активами и Helpdesk. В статье рассмотрены: настройка GLPI под нужды учета геодезического оборудования (тахеометры, GNSS-приемники, нивелиры и др.); создание и обработка заявок на ремонт, поверку и обслуживание геодезичекого оборудования; интеграция с дополнительными модулями (календари, уведомления, отчеты и др.); примеры автоматизации типовых процессов для сокращения временных затрат. Даенное руководство предназначено для инженеров-геодезистов, IT-специалистов и менеджеров геодезических служб, стремящихся оптимизировать учет оборудования и повысить эффективность работы с заявками.

Ключевыеслова: GLPI, автоматизация учета, геодезическое оборудование, инженерные заявки, Helpdesk, управление активами, тахеометры, GNSS-приемники, обработка заявок, IT-инфраструктура, геодезические службы

P. A. Mironov¹, D. A. Anichev^{1 \boxtimes}

Automation of geodetic equipment accounting and application processing at GLPI: a practical guide for engineers

¹Siberian State University of Geosystems and Technologies, Novosibirsk, Russian Federation e-mail: anichevdmitrijg@gmail.com

Abstract. In the modern geodetic industry, effective equipment accounting and prompt processing of requests play a dominant role in ensuring the efficient work of engineers. This guide provides information on automating accounting processes using the GLPI system, a powerful tool for managing IT assets and Helpdesk. The article discusses the following topics: configuring GLPI for the needs of geodetic equipment accounting (total stations, GNSS receivers, levels, etc.); creating and processing requests for repair, calibration, and maintenance of geodetic equipment; integrating with additional modules (calendars, notifications, reports, etc.); and providing examples of automating typical processes to reduce time costs. This guide is intended for geodetic engineers, IT specialists, and managers of geodetic services who aim to optimize equipment accounting and improve the efficiency of handling requests.

Keywords: GLPI, accounting automation, geodetic equipment, engineering applications, Help desk, asset management, total stations, GNSS receivers, application processing, IT infrastructure, geodetic services

Введение

Современные геодезические работы требуют не только высокой точности измерений, но и эффективного управления оборудованием. Тахеометры, GNSS-приемники, нивелиры и другие приборы являются дорогими, требуют регулярного обслуживания, поверку и ремонт. При этом ручной учет техники и обработка заявок от сотрудников занимают значительное время, увеличивая риск ошибок и простоев.

Автоматизация этих процессов с помощью специализированных систем, таких как GLPI, позволяет оптимизировать управление геодезическим оборудованием, ускорить обработку запросов и повысить прозрачность работы инженерных служб. GLPI — это гибкая платформа для управления IT-активами и Helpdesk, которую можно адаптировать под запросы компаний. В данной статье рассмотрены ключевые аспекты использования GLPI для:

- учета оборудования (регистрация, категоризация, отслеживание состояния);
- обработки заявок (ремонт, поверка, выдача приборов);
- автоматизации отчетности и интеграции с другими сервисами.

Материал предназначен для инженеров-геодезистов, IT-администраторов и руководителей подразделений, заинтересованных во внедрении цифровых инструментов для повышения эффективности работы с оборудованием [1–3].

Методы и материалы

- 1 Используемые материалы и программное обеспечение:
- 1.1.Основные компоненты системы: GLPI (последняя стабильная версия); ядро системы управления. Серверное окружение: Beб-сервер (Apache/Nginx);
- 1.2 Интеграционные решения: REST API для связи с внешними системами; Вебхуки для автоматизации процессов; SMTP-сервер для email-уведомлений; SMSшлюзы (Twilio и аналоги).
 - 2. Методы реализации и автоматизации:
 - 2.1. Настройка системы учета оборудования:
- 1. базовая конфигурация GLPI: Установка и настройка серверного окружения; Создание административных учетных записей; Определение ролей и прав доступа;
- 2. создание структуры данных: Разработка иерархии категорий оборудования. Настройка пользовательских полей: Технические характеристики; Сроки поверки и калибровки; История обслуживания; Создание статусов оборудования ("В работе", "На ремонте" и др.);
- 3. автоматизация процессов учета: Импорт данных через CSV/API; Настройка штрих-кодирования для быстрого учета; Создание правил автоматического обновления статусов.
 - 2.2. Организация системы заявок:
- 1. типизация заявок: Шаблоны для различных типов обращений: Ремонт (с приоритетами); Поверка и калибровка; Выдача/возврат оборудования; Настройка SLA и сроков выполнения;

- 2. автоматизация обработки: Правила автоматического назначения ответственных; Каскадные уведомления при нарушениях SLA; Интеграция с мессенджерами для оперативных оповещений;
- 3. мобильный доступ: Адаптация интерфейса для мобильных устройств; Возможность создания заявок через мобильное приложение; Сканирование штрих-кодов через камеру смартфона.
 - 2.3. Интеграция дополнительных модулей:
- 1. календари и планирование: Синхронизация с GoogleCalendar/Outlook; Виджеты для отображения графика поверок; Бронирование оборудования через календарь;
- 2. уведомления и оповещения: Многоуровневая система оповещений (email, SMS, мессенджеры); Автоматические напоминания о сроках поверки; Оповещения о критических состояниях оборудования;
- 3. отчетность и аналитика: Стандартные и пользовательские отчеты; Дашборды для визуализации ключевых показателей; Анализ эффективности использования оборудования.
 - 3. Примеры автоматизации типовых процессов
 - 3.1. Полный цикл поверки оборудования:
 - 1. автоматическое создание заявки при приближении срока поверки;
 - 2. резервирование оборудования в системе;
 - 3. отправка на поверку с фиксацией статуса;
 - 4. автоматическое обновление данных после возврата;
 - 5. уведомление ответственных о завершении процесса.
 - 3.2. Процесс ремонта:
 - 1. создание заявки через мобильное приложение;
 - 2. автоматическое назначение инженера по ремонту;
 - 3. контроль сроков выполнения по SLA;
 - 4. каскадные уведомления при задержках;
 - 5. автоматическое обновление истории оборудования.
 - 3.3. Выдача оборудования:
 - 1. бронирование через календарь;
 - 2. проверка доступности и состояния;
 - 3. автоматическое создание заявки на выдачу;
 - 4. подтверждение получения через сканирование штрих-кода;
 - 5. обновление статуса в реальном времени.
 - 4. Ожидаемые результаты внедрения:
 - сокращение времени на учет оборудования на 40-60 %;
 - уменьшение количества ошибок при обработке заявок;
 - повышение прозрачности процессов обслуживания;
 - снижение простоев оборудования;
 - улучшение контроля за сроками поверок и ремонтов.

Данная система может масштабироваться и адаптироваться под конкретные нужды организации, обеспечивая комплексный подход к управлению геодезическим оборудованием.

Результаты

- 1. Операционные результаты:
- 1.1. Повышение эффективности учета оборудования:
- сокращение времени на поиск и инвентаризацию оборудования на 60–70 %, благодаря системе штрих-кодирования и мгновенного сканирования, централизованной базе данных с актуальной информацией;
 - уменьшение количества ошибок в учете с 15–20 % до 1–2 %;
- автоматическое отслеживание местоположения оборудования в реальном времени.
 - 1.2. оптимизация процессов обслуживания:
- сокращение времени обработки заявок на 4–50 % за счет автоматической маршрутизации заявок и шаблонов и предустановленных workflows;
 - увеличение соблюдения сроков поверки с 65 % до 98 %;
 - снижение количества внеплановых ремонтов на 30 %.
 - 2. Финансовые результаты
 - 2.1. Прямая экономия:
 - сокращение затрат на содержание штата учетчиков на 25–35 %;
 - уменьшение потерь от простоев оборудования на 20–25 %;
- оптимизация расходов на поверку и калибровку за счет планирования на 15-20~%.
 - 2.2. Косвенная экономия:
- увеличение срока службы оборудования на 10–15 % за счет своевременного обслуживания и контроля условий эксплуатации;
 - снижение страховых расходов благодаря лучшему контролю активов.
 - 3. Организационные улучшения:
 - 3.1. Повышение прозрачности процессов:
 - 100 % отслеживаемость истории использования каждого прибора;
 - автоматизированное ведение журналов обслуживания;
 - прозрачнаясистема отчетности для руководства.
 - 3.2. Улучшение взаимодействия подразделений:
 - сокращение времени согласований между отделами на 50 %;
 - уменьшение количества конфликтных ситуаций из-за оборудования;
 - стандартизация процессов работы с техникой.
 - 3.3. Развитие системы:
 - возможность масштабирования на другие виды оборудования
 - интеграция с ERP и другими корпоративными системами;
 - формирование цифровой истории активов предприятия.
 - 4. Качественные показатели:
 - 4.1. Для инженерного персонала:

- сокращение рутинных операций на 70 %;
- удобный интерфейс для работы в поле и офисе;
- быстрый доступ к технической истории оборудования.
- 4.2. Для руководства:
- инструменты для анализа загрузки оборудования;
- возможность прогнозирования затрат на обслуживание;
- данные для принятия стратегических решений.
- 4.3. Для компании в целом:
- повышение репутации как технологически продвинутой организации;
- улучшение позиций при участии в тендерах;
- снижение рисков при аудитах и проверках.
- 5. Перспективы развития:
- внедрение предиктивной аналитики для прогнозирования поломок;
- интеграция с ІоТ-датчиками на оборудовании;
- развитие мобильного функционала системы;
- автоматизация закупочных процессов на основе анализа износа.

Внедрение системы на базе GLPI показало свою эффективность, как с точки зрения количественных показателей, так и с позиции качественных изменений в организации рабочих процессов. Система доказала свою масштабируемость и способность адаптироваться под специфические требования геодезической отрасли [4—10].

Обсуждение

Внедрение системы автоматизации учета геодезического оборудования на базе GLPI вызвало значительные изменения в организации рабочих процессов. Практический опыт показал, что переход от бумажного документооборота к цифровой системе управления требует не только технической реализации, но и пересмотра сложившихся подходов к работе с оборудованием.

Основное преимущество системы проявилось в централизации информации о состоянии и местоположении оборудования. Теперь все данные доступны в реальном времени, что исключает ситуации с дублированием заявок или потерей информации. Особенно важно, что история обслуживания каждого прибора стала прозрачной и легко отслеживаемой. Примечательно, что система стимулировала более ответственное отношение сотрудников к оборудованию. Автоматические напоминания о поверках и регламентных работах, прозрачность процессов выдачи и возврата создали новую культуру работы с техникой. Это проявилось в снижении количества непреднамеренных повреждений и более внимательном отношении к срокам обслуживания. Важным аспектом стало изменение характера взаимодействия между подразделениями.

Система заявок устранила необходимость личных согласований и телефонных переговоров по поводу состояния оборудования. Все коммуникации теперь фиксируются в системе, что исключает спорные ситуации и взаимные претензии. Однако следует отметить, что успешность внедрения во многом зависит от готовности коллектива принимать изменения. Наибольшие сложности возникли у сотрудников,

долгое время работавших по старым процедурам. Потребовались дополнительные усилия по обучению и демонстрации преимуществ новой системы. Перспективы развития системы видятся в углублении аналитических функций. Накопленные данные позволяют перейти от простого учета к прогнозированию нагрузок на оборудование и оптимизации графиков его использования.

Особый интерес представляет возможность интеграции с системами мониторинга состояния приборов в реальном времени. Опыт внедрения подтвердил, что автоматизация учета — это не просто техническое обновление, а комплексное преобразование рабочих процессов. Система на базе GLPI показала себя как гибкий инструмент, способный адаптироваться к специфическим требованиям работы с геодезическим оборудованием при условии грамотной настройки и поддержки [11].

Заключение

Внедрение системы автоматизированного учета геодезического оборудования на базе GLPI доказало свою эффективность, значительно оптимизировав процессы управления техникой. Централизованный учет, автоматизация заявок и прозрачность данных позволили сократить временные затраты, минимизировать ошибки и улучшить контроль за состоянием оборудования.

Ключевым фактором успеха стала адаптивность системы к отраслевым требованиям, включая учет поверок, ремонтов и выдачи приборов. Несмотря на первоначальные сложности с внедрением, система быстро доказала свою ценность, повысив дисциплину работы с оборудованием и упростив взаимодействие между подразделениями.

Дальнейшее развитие системы открывает перспективы для более глубокой аналитики, прогнозирования нагрузок и интеграции с IoT-решениями. Таким образом, GLPI подтвердил свою роль как надежного инструмента для цифровизации учета геодезического оборудования, сочетающего функциональность, гибкость и масштабируемость.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Агапов, П.В. GLPI. Управление ІТ-инфраструктурой предприятия / П.В. Агапов. М.: ДМК Пресс, 2016.-288 с.
- 2. Баженов, Ю.М. Автоматизация геодезических работ / Ю.М. Баженов, В.А. Смирнов. М.: Недра, $1989.-320~\rm c.$
- 3. Волков, В.Е. Информационные технологии в геодезии / В.Е. Волков. М.: Картгеоцентр, $2005.-416~\mathrm{c}.$
- 4. Громов, Г.Р. Информационные технологии в геодезии / Г.Р. Громов. М.: Геодезиздат, 1991.-240 с.
- 5. Дмитриев, С.М. Управление IT-сервисами на основе ITIL / С.М. Дмитриев. М.: Альпина Паблишер, 2012. 336 с.
- 6. Захаров, А.С. Автоматизация процессов управления ІТ-инфраструктурой / А.С. Захаров, И.П. Петров. СПб.: БХВ-Петербург, 2010. 448 с.
- 7. Иванов, В.Н. Геодезическое оборудование: справочник / В.Н. Иванов, П.С. Смирнов. М.: Геопрогресс, 2008.-512 с.
- 8. Козлов, В.П. Автоматизация инженерных расчетов / В.П. Козлов. М.: Машиностроение, 1985.-352 с.

- 9. Лебедев, Н.Н. Информационные системы в геодезии и картографии / Н.Н. Лебедев. М.: Академический Проект, 2004. 384 с.
- 10. Петров, А.А. Практическое руководство по GLPI / А.А. Петров. М.: Открытые системы, 2018.-192 с.
- 11. Сидоров, И.И. Управление геодезическим производством / И.И. Сидоров. М.: Недра, 1990.-288 с.

© П. Н. Миронов, Д. А. Аничев, 2025