$M. A. Родыгин^{l \bowtie}, A. A. Шарапов^l$

Разработка интерактивного 3D-симулятора управления артиллерийским орудием

¹Сибирский государственный университет геосистем и технологий, г. Новосибирск, Российская Федерация e-mail: plaginatordr@gmail.com

Аннотация. В статье рассматривается проблема отсутствия интерактивных 3D-симуляторов для подготовки расчетов артиллерии, что сказывается на качестве тактических навыков и реакции в критических ситуациях. Цель исследования — разработать масштабируемый симулятор управления советским артиллерийским орудием, объединяющий аппаратные контроллеры, предсказуемую баллистику и адаптивный ИИ на движке Unreal Engine 5. В качестве методов применены интеграция внешних устройств через UDP/JSON, использование Behavior Tree и EQS для создания ИИ, создания компонентной системы урона, оптимизация локации с помощью Level Streaming и использование chaos vehicles для физики транспорта. Полученные результаты демонстрируют стабильную синхронизацию энкодеров и движка, предсказуемую модель стрельбы, динамичное поведение противников, иммерсивный игровой процесс и поддержание 60 FPS на среднебюджетных ПК. Выводы подтверждают практическую ценность симулятора для отработки командных навыков, увеличения влияния патриотизма для молодежи, а также потенциал проекта в образовательных и исследовательских целях.

Ключевые слова: 3D-симулятор, Unreal Engine, UDP, микроконтроллеры, моделирование, геймдизайн, Деревья поведения ИИ

 $M. A. Rodygin^{l \boxtimes}, A. A. Sharapov^{l}$

Development of an interactive 3D simulator for artillery gun control

¹Siberian State University of Geosystems and Technologies, Novosibirsk, Russian Federation e-mail: plaginatordr@gmail.com

Abstract. The article adresses the lack of interactive 3D simulators for training artillery crews, which affects the quality of tactical skills and response in critical situations. The aim of the study is to develop a scalable simulator for operating a Soviet artillery gun, integrating hardware controllers, predictable ballistics, and adaptive AI based on Unreal Engine 5. The methods applied include integration of external devices via UDP/JSON, use of Behavior Tree and EQS for AI creation, development of a component-based damage system, location optimization using Level Streaming, and the application of Chaos Vehicles for transport physics. The results demonstrate stable synchronization between encoders and the engine, predictable shooting behavior, dynamic enemy actions, immersive gameplay, and consistent 60 FPS performance on mid-range PCs. The conclusions confirm the simulator's practical value for developing team coordination skills, increasing patriotic engagement among youth, and its potential in educational and research contexts.

Keywords: 3D-simulator, Unreal Engine, UDP, microcontrollers, modeling, gamedesign, AI Behavior Trees

Введение

Проект представляет собой интерактивный (с аппаратными контроллерами) 3D-симулятор управления артиллерийским расчетом в эпоху Великой Отечественной войны. Основная цель — создать симулятор с упором на тактическое взаимодействие и адаптивный ИИ противника. Ключевые задачи:

- реализация аппаратного управления через энкодеры;
- моделирование баллистики с учетом параллакса и создание кинематографичных эффектов попаданий;
- реализация разнообразных целей с проработанной физической моделью: танки, пехота, артиллерия, виды грузовиков;
- создание адаптивного ИИ пехоты и техники, включая поведение в бою, поиск укрытий, объезд препятствий;
 - введение системы урона, в том числе для техники;
- разработка удобного интерфейса и системы навигации по миссиям (карта, компасы, маркеры);
- построение масштабной, оптимизированной локации с набором уровней, позициями, укрытиями для противников и возможностями фланговых атак для игрока;

Проект существенно отличается от аналогов. Например, от War Thunder отличается акцентом на тактическое взаимодействие нескольких игроков за одним устройством, использованием пехоты, интеграцией физических контроллеров и направленностью на клиентскую архитектуру. Другие проекты подразумевают стрельбу по одной статичной или движущейся в одном направлении, мишени. Аналогов по такому типу управления нет.

Методы и материалы

Для начала, необходимо реализовать синхронизацию положения орудия. Она осуществлена путем вращения энкодеров которые представляют собой ручки артиллерийского орудия.

Аппаратная часть включает:

- 1. Энкодеры (2 шт.): передают углы поворота рукоятей наводчика (горизонтальная наводка и возвышение).
- 2. Микроконтроллер ESP32: обрабатывает сигналы энкодеров, ограничивает углы наведения. Данные отправляются в JSON-формате и отправляются через UDP-протокол широковещательным запросом устройствам в wi-fi сети.

Связь с Unreal Engine 5 реализована через плагин UDP-Unreal и функциями управления поворота орудием в blueprints (рис. 1).

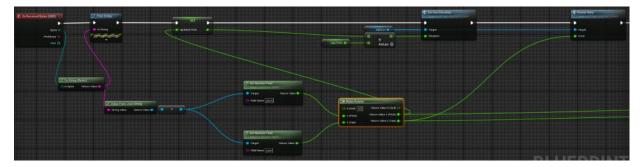
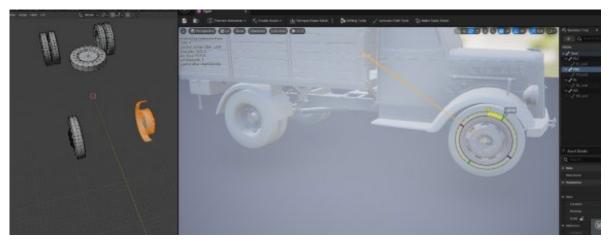


Рис. 1. Событие для синхронизации поворота орудия с полученными данными


Необходимо устранить эффект параллакса, так как снаряд всегда будет уходить правее перекрестия прицела. Поскольку ось камеры игрока не совпадает с осью ствола, нужно при выстреле компенсировать различие. Для этого строится луч из центра камеры и осуществляется поиск нужного угла полета для порождения снаряда из класса.

Создание эффектов кинематографичных попаданий осуществляется следующим образом: в начале порождения снаряд прогнозирует точку попадания и при прогнозе прямого попадания по противнику осуществляется переход на камеру с дальнейшими анимациями и включением замедления времени (рис. 2). Также в этом классе реализована баллистика.

Рис. 2. Второй переход анимации камеры во время полета снаряда

Для реализации техники противника была использована модульная система физического моделирования chaos vehicles. Для портирования необходимо подготовить модель в blender и настроить уже в Unreal Engine (рис. 3).

Puc. 3. Настроенная модель колес в blender и готовый к настройке skeletal mesh в Unreal Engine

Для создания пехоты, необходимо создать интерфейс, который будет иметь базовый функционал для каждого противника, методы которого можно будет определять в зависимости от нужного функционала. Также нужно поступить с базовым классом противников, а сами модели противников должны являться skeletal mesh, у которого есть Physics Asset.

Переходим к созданию ИИ пехоты. Для начала работы необходим AIController — базовый класс для всех контроллеров искусственного интеллекта. Этот класс позволит в паре с AIPerception реализовать систему по переключению состояний, которая работает в зависимости от вывода: Пассивное состояние (нет целей), состояние изучения (слух), состояние атаки (зрение). Далее используется Behavior Tree, который запускается в настроенном AIController. В нем имеется задача «Run EQS Query» — это узел задачи системы запросов среды, который ищет нужную точку в пространстве (точку укрытия), ориентируясь на «тесты» — условия, заданные в самом EQS (рис. 4).

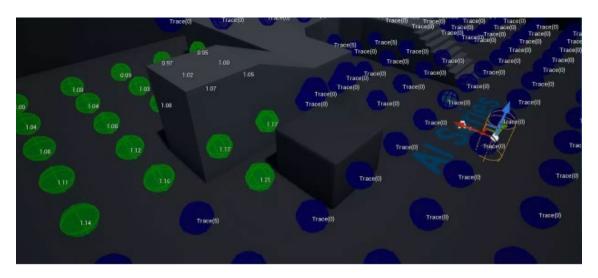


Рис. 4. Работа EQS: синим помечены отброшенные точки

Для создания ИИ техники нужно использовать текущий угол относительно точки на размеченном пути, который и определит количество тяги и угол поворота колес. Для динамики ИИ должен адаптироваться: перед машиной слева и справа поставлены невидимые прямоугольные параллелепипеды, которые регистрируют есть ли перед машиной препятствия.

Подобную модифицированную модель поведения унаследовал и танк, с учетом шасси — гусениц, которые имеют свою схему управления. На рис. 5, 6 показан результат работы алгоритмов — противники переместились.

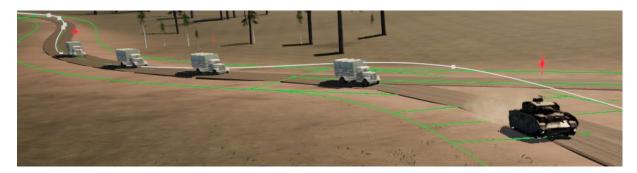


Рис. 5. Начальная точка перемещения техники

Рис. 6. Промежуточный результат перемещения техники

Система урона реализована с помощью отдельного компонента, в котором есть базовые функции получения урона, нанесения урона, лечения. Этот компонент есть у каждого противника.

Карта реализована путем помещения камеры, направленной вниз на большую высоту, со своими настройками рендера для ортографического вида. Необходимо это для быстрого получения карты местности, управления отображаемой области и масштабом, выставления маркеров и выбора позиции (рис. 7). Маркеры необходимы для быстрого расчета баллистики и служат ориентиром для второго оператора (рис. 8). В проекте также реализовано 2 компаса, которые показывают направление на цель.

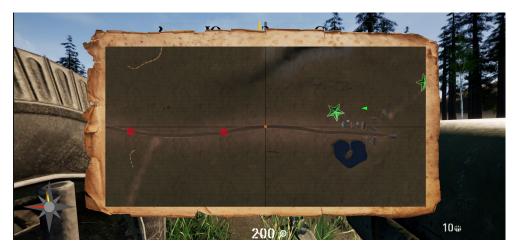


Рис. 7. Карта

Рис. 8. Установленный маркер на экране и работа компасов, отображение задач

Далее была реализована масштабная карта, со множеством декораций, оптимизированной растительностью (рис. 9). В последствии, карта была поделена на 4 уровня, каждый из которых представляет свой сценарий.

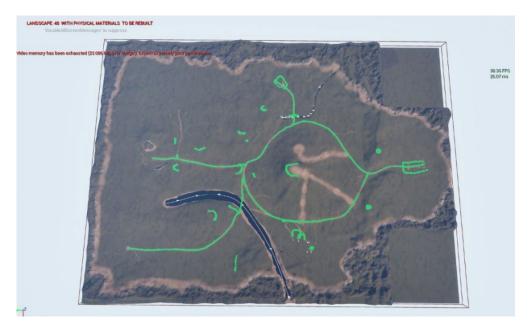


Рис. 9. Игровая локация размером 5,82 * 7,94 * 0,55 км

Результаты

Проведенные испытания подтвердили высокую точность синхронизации энкодеров и игрового движка, обеспечили стабильную компенсацию параллакса и предсказуемую траекторию полета снаряда. Адаптивный ИИ продемонстрировал способность в более чем 90 % случаев находить укрытия и успешно объезжать препятствия. Оптимизация масштабной карты размером примерно 6×8 км позволила поддерживать стабильные 60 FPS на среднебюджетных персональных компьютерах (GTX 1650 SUPER, Intel core i5-9400F, 16 гигабайт оперативной памяти).

Обсуждение

Система показала высокую иммерсивность и тактическую глубину. Поведение ИИ стабильно, но при превышении количества более 100 ИИ-агентов пехоты производительность постепенно падает из-за большого количества анимаций и EQS. Что является нужным результатом, учитывая качество поведения ИИ.

Заключение

Разработанный симулятор артиллерийского расчета сочетает тактическое взаимодействие игроков, физическую достоверность и адаптивный ИИ. Основные достижения включают стабильную интеграцию физических контроллеров с игровым движком, реализацию ИИ, способного адаптироваться к различным условиям, удобную систему навигации и высокий темп игрового процесса. Проект обладает высокой масштабируемостью, что позволяет адаптировать его под различные образовательные и исследовательские цели. Перспективы развития включают расширение контента (новые уровни, типы задач и противников, сюжет), внедрение союзных боевых единиц, реализацию системы разрушаемости, разработку системы поощрений

за высокий уровень навыков, проведение интерактивных брифингов с использованием больших языковых моделей и улучшение качества моделирования баллистики.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Злотников К.А., Недеров В.М., Нестеренко А.А., Золотарев А.С. Научно обоснованные рекомендации по синтезу тренажеров с элементами виртуальной реальности для подготовки офицеров-артиллеристов // Экономика. Право. Инновации. 2020. № 3. С. 43–47.
- 2. Широкорад А. Б. Энциклопедия отечественной артиллерии / А. Б. Широкорад. Минск : Харвест, 2000. 1152 с.
- 3. Залога С. Танки Второй мировой войны : советская и немецкая бронетехника / С. Залога. Москва : Эксмо, 2019. 256 с.
- 4. Gregory J. Game Engine Architecture / Jason Gregory. 3rd ed. Boca Raton : CRC Press, 2018. 904 c.
- 5. Akenine-Möller T., Haines E., Hoffman N., Pesce A., Iwanicki M., Hillaire S. Real-Time Rendering / Tomas Akenine-Möller, Eric Haines, Naty Hoffman и др. Boca Raton : CRC Press, 2018. 1136 с.
- 6. Foley J. D., van Dam A., Feiner S. K., Hughes J. F. Computer Graphics: Principles and Practice / James D. Foley и др. 3rd ed. Boston: Addison-Wesley, 2013. 1152 c.
- 7. Buckland M. Programming Game AI by Example / Michael Buckland. Wordware Publishing, 2004. 348 c.
- 8. Thorpe J. A., Miller D. C. SIMNET: The Advent of Simulator Networking / J. A. Thorpe, D. C. Miller // IEEE Computer Graphics and Applications. 1994. Vol. 14, no. 1. P. 30–37.
- 9. US Army. FM 6-40: Field Artillery Cannon Gunnery / Headquarters, Department of the Army. Washington, D.C.: U.S. Government Printing Office, 2018.
- 10. Министерство обороны Российской Федерации. Концепция развития системы военного образования до 2030 года / Министерство обороны Российской Федерации. Москва, 2022. Режим доступа: https://mil.ru (дата обращения: 25.04.2025).
- 11. Epic Games. Unreal Engine Documentation : AI System, EQS, Physics, Level Streaming / Epic Games. Режим доступа: https://docs.unrealengine.com (дата обращения: 25.04.2025).
- 12. Blender Foundation. Blender Manual : 3D Modeling for Simulations / Blender Foundation. Режим доступа: https://docs.blender.org (дата обращения: 25.04.2025).
- 13. Adafruit Industries. Getting Started with ESP32 / Adafruit Industries. Режим доступа: https://learn.adafruit.com/getting-started-with-esp32 (дата обращения: 25.04.2025).
- 14. Опыт применения обучающих систем с элементами виртуальной реальности для подготовки специалистов ракетных войск и артиллерии [Электронный ресурс] // Киберленинка. Режим доступа: https://cyberleninka.ru/article/n/opyt-primeneniya-obuchayuschih-sistem-selementami-virtualnoy-realnosti-dlya-podgotovki-spetsialistov-raketnyh-voysk-i-artillerii (дата обращения: 25.04.2025).
- 15. Проблематика изучения руководства по летной эксплуатации при формировании знаний и навыков курсантов истребительной авиации [Электронный ресурс] // Киберленинка. Режим доступа: https://cyberleninka.ru/article/n/problematika-izucheniya-rukovodstva-po-lyotnoy-ekspluatatsii-pri-formirovanii-znaniy-i-navykov-kursantov-istrebitelnoy-aviatsii-po (дата обращения: 25.04.2025).
- 16. Юсупова Ф. Э., Солижонова М. Об. К. Симуляторы в образовательном процессе / Ф. Э. Юсупова, М. Об. К. Солижонова // Вопросы науки и образования. -2018. -№ 10 (22). С. 193–195. URL: https://cyberleninka.ru/article/n/simulyatory-v-obrazovatelnom-protsesse/viewer (дата обращения: 27.04.2025)
- 17. Интеллектуальные системы в компьютерных играх: перспективы развития искусственного интеллекта в игровой индустрии [Электронный ресурс] // CyberLeninka. URL:

https://cyberleninka.ru/article/n/intellektualnye-sistemy-v-kompyuternyh-igrah-perspektivy-razvitiya-iskusstvennogo-intellekta-v-igrovoy-industrii/viewer (дата обращения: 27.04.2025).

- 18. Черный С. Ю. Конструирование прошлого в видеоиграх: игрок как потребитель и соавтор исторического нарратива (проект «Europa Universalis IV») / С. Ю. Черный // Шаги/Steps. 2017. № 1. URL: https://cyberleninka.ru/article/n/konstruirovanie-proshlogo-v-videoigrah-igrok-kak-potrebitel-i-soavtor-istoricheskogo-narrativa-proekt-europa-universalis-iv/viewer (дата обращения: 27.04.2025).
- 19. Иванов Н. П., Смирнов К. Л. Исследование необходимости использования переменного значения баллистического коэффициента при моделировании траектории пули в сухопутных условиях / Н. П. Иванов, К. Л. Смирнов // Информационные технологии. − 2021. − № 3. − С. 50–58. − URL: https://cyberleninka.ru/article/n/issledovanie-neobhodimosti-ispolzovaniya-peremennogo-znacheniya-ballisticheskogo-koeffitsienta-pri-modelirovanii-traektorii-puli-v (дата обращения: 27.04.2025).
- 20. Программно-информационная система обучения работе с оптическими прицелами [Электронный ресурс] // CyberLeninka. URL: https://cyberleninka.ru/article/n/programmno-informatsionnaya-sistema-obucheniya-rabote-s-opticheskimi-pritselami (дата обращения: 27.04.2025).

© М. А. Родыгин, А. А. Шарапов, 2025