$M. \ C. \ Исмаилова^{l}, \ B. \ H. \ Никитин^{l \bowtie}$

Система экстренной остановки дрона мультироторного типа при обнаружении препятствия

¹Сибирский государственный университет геосистем и технологий, г. Новосибирск, Российская Федерация e-mail: vslav.nikitin@gmail.com

Аннотация. В настоящее время беспилотные летательные аппараты (БПЛА) мультироторного типа широко применяются в различных сферах благодаря своей манёвренности и функциональности. Однако одним из ключевых вопросов эксплуатации остаётся обеспечение безопасности полётов, особенно при обнаружении препятствий. В статье рассматривается подбор необходимых сенсоров для своевременного выявления препятствий, а также разработка программного обеспечения для реализации функции экстренной остановки дрона. Решение данной задачи позволяет повысить надёжность и безопасность работы летательных аппаратов, минимизировав риск столкновений и повреждений [1, 2].

Цель работы заключается в проведении исследования для выбора оптимального набора сенсоров, необходимых для эффективного обнаружения препятствий и разработке программного обеспечения (ПО) для обнаружения препятствия. А также проверке полученного результата в симуляторе. В данной статье рассмотрены основные типы сенсоров для обнаружения препятствий. Разработаны различные варианты компоновок сенсоров на дроне и из них отобрана наиболее оптимальная. Разработаны схемы работы устройства и передачи потоков данных. В результате выполненной работы было разработано программное обеспечение для экстренной остановки дрона перед препятствием. Полученный результат был проверен в симуляторе GA-ZEBO.

Ключевые слова: программное обеспечение, сенсоры, препятствия, безопасность БПЛА, симулятор GAZEBO

 $M. S. Ismailova^{l}, V. N. Nikitin^{l \boxtimes}$

Multi-rotor drone emergency stop system when obstacle is detected

¹Siberian State University of Geosystems and Technologies, Novosibirsk, Russian Federation e-mail: vslav.nikitin@gmail.com

Abstracr. Currently, multi-rotor unmanned aerial vehicles (UAVs) are widely used in various fields due to their maneuverability and functionality. However, one of the key operational issues remains ensuring flight safety, especially when obstacles are detected. The article discusses the selection of the necessary sensors for timely detection of obstacles, as well as the development of software for implementing the emergency stop function of the drone. The solution to this problem allows increasing the reliability and safety of aircraft operation, minimizing the risk of collisions and damage [1, 2].

The purpose of the work is to conduct a study to select the optimal set of sensors required for effective obstacle detection and to develop software for obstacle detection. And also, to check the obtained result in the simulator. This article discusses the main types of sensors for obstacle detection. Various options for sensor layouts on a drone have been developed and the most optimal one has been selected. The schemes of the device operation and data flow transmission have been developed. As a result of the work performed, software for emergency stopping of the drone in front of an obstacle was developed. The obtained result was checked in the GAZEBO simulator.

Keywords: software, sensors, obstacles, UAVs security, GAZEBO simulator

Введение

На сегодняшний день БПЛА используются во многих сферах деятельности человека. Масштабы использования дронов стремительно возрастают. Беспилотные летательные аппараты находят применение в сельском хозяйстве, логистике, мониторинге окружающей среды, а также в поисково-спасательных операциях. Постоянное совершенствование технологий позволяет расширять возможности использования БПЛА. Вместе с этим появляется необходимость в безопасной эксплуатации БПЛА [3, 4]. Цель – провести исследование для выбора оптимального набора сенсоров, необходимых для эффективного обнаружения препятствий и разработать ПО для обнаружения препятствия. А также проверить полученный результат в симуляторе.

Для достижения поставленной цели необходимо решить следующие задачи:

- рассмотреть теоретические аспекты, применимые к данной теме;
- составить схемы работы устройств, с передаваемыми потоками данных;
- составить варианты компоновок сенсоров для дрона и выбрать наиболее оптимальную;
 - протестировать выбранную компоновку сенсоров в симуляторе.

В данной статье разработано ПО для экстренной остановки дрона мультироторного типа при обнаружении препятствия.

Методы и материалы

Для выполнения данной работы были рассмотрены различные типы сенсоров:

- дальномеры (лазерные, ультразвуковые, радиочастотные). Лазерные дальномеры используют световые импульсы для измерения расстояния до объектов с высокой точностью. Ультразвуковые дальномеры работают за счёт излучения и приёма звуковых волн, не слышимых человеческим ухом, и позволяют определять расстояние до препятствий на небольших расстояниях. Радиочастотные дальномеры основаны на использовании радиоволн.
- 2D/3D лидары. Формируют детализированное облако точек окружающего пространства с помощью лазерных лучей. 2D-лидары сканируют только одну плоскость, что полезно для обнаружения препятствий на определённом уровне, а 3D-лидары способны создавать трёхмерные модели окружающей среды, что значительно расширяет возможности навигации беспилотных систем;
- камеры глубины. Фиксируют не только изображение объектов, но и их удалённость от камеры, используя различные методы, такие как стереоскопия, структурированный свет или время пролёта. Такие камеры позволяют получать информацию о трёхмерной структуре сцены, что важно для распознавания объектов и оценки расстояний;

– комбинированные сенсорные массивы. Сочетают в себе различные типы датчиков, например, камеры, дальномеры и лидары, что обеспечивает более полное и точное восприятие окружающей среды. Такие системы способны компенсировать недостатки отдельных сенсоров и повышают надёжность и эффективность работы БПЛА в сложных условиях [5–7].

Для составления компоновок сенсоров на дроне, были рассмотрены 3 зоны обнаружения препятствий (рис. 1):

- над дроном препятствием является стена;
- перед дроном должны различаться 2 типа препятствий: человек и стена;
- под дроном должны обнаруживаться люди, пол препятствием не является.

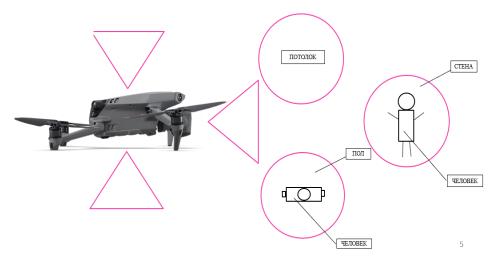


Рис. 1. Зоны обнаружения препятствий

Основными параметрами, которым должно соответствовать получившееся решение, являются:

- ожидаемая себестоимость решения не должна превышать 80 тыс. руб.;
- компоновка сенсоров должна обеспечивать определение препятствий с трёх направлений (под, над и перед БПЛА);
 - ПО должно реагировать на 2 типа препятствий: человек, стена;
- решение должны быть максимально легким не более 200 г. без учета микрокомпьютера.

Была составлена схема работы устройства (рис. 2). Данные с сенсоров через физические интерфейсы и программные драйвера поступают на одноплатный компьютер Repka Pi, на котором при обнаружении препятствия формируется команда стоп и передается в полетный контроллер по протоколу MavLink.

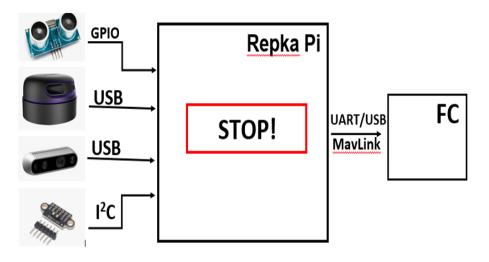


Рис. 2. Схема работы устройства

Также был проработан алгоритм передачи потоков данных между сенсорами (рис. 3), топиками и микропрограммами в случае использования фреймворка ROS (Robot Operating System). Данные, поступающие с сенсоров, публикуются в топиках. Данные в топиках обрабатываются микропрограммами, результаты работы которых публикуются в топике модуля анализа препятствий (МАП). Отдельная специализированная микропрограмма по данным из этого топика реагирует на потенциально опасные ситуации и, в случае их выявления, останавливает БПЛА путем взаимодействия с топиком navigation [8].

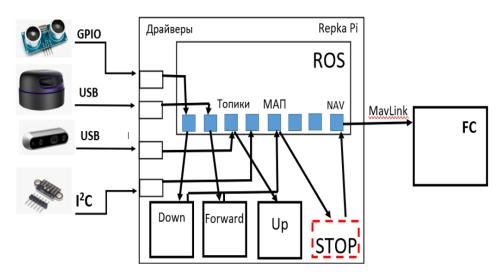


Рис. 3. Схема передачи потоков данных

Было составлено более 12 различных компоновок и из них выбрана наиболее оптимальная (рис. 4), соответствующая приведенным ранее параметрам. Согласно выбранной компоновке, в верхней части дрона расположены три 2d лазер-

ных сканера, в передней части дрона расположены четыре ультразвуковых датчика, в нижней части дрона расположена камера глубины.

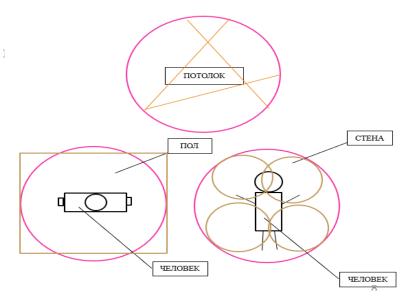


Рис. 4. Выбранная компоновка сенсоров

Результаты

В результате проведенного исследования:

- рассмотрены основные типы сенсоров, и выбраны наиболее оптимальные;
 - рассмотрены зоны обнаружения препятствий у дрона;
 - составлены схемы работы устройства и передачи потоков данных;
- составлены различные варианты компоновок сенсоров на дроне и выбрана наиболее оптимальная.

С учетом выбранной компоновки сенсоров было разработано программное обеспечение для работы с фреймворком ROS на языке программирования Python (рис. 5).

```
import rospy
from std_msgs.msg import String
from sensor_msgs.msg import Range, Image, LaserScan
from cv_bridge import CvBridge
from clover import srv
from datetime import datetime
                         import numpy as np
import threading
depth stack = []
range_stack = []
lidar stack = []
bridge = CvBridge()
navigate = rospy.ServiceProxy('navigate', srv.Navigate)
get_telemetry = rospy.ServiceProxy('get_telemetry', srv.GetTelemetry)
obstacle_pub = rospy.Publisher('obstacle_status', String, queue_size=10)
. . .
rospy.init_node('combined_obstacle_navigation')
processing_thread = threading.Thread(target=process_data)
processing thread.daemon = True
nrocessing thread start()
```

Рис. 5. Разработанное программное обеспечение

Проверка разработанного ПО выполнялась в симуляторе GAZEBO (рис. 6) по алгоритму:

- Запуск робототехнического симулятора.
- Запуск сцены с роботом и объектами.
- Над дроном устанавливается препятствие в виде стены в расстоянии от 10 до 30 см.
 - Дается команда дрону взлететь.
 - Дрон подает команду, что есть препятствие, взлет недоступен.
- Препятствие убирается, дрону дается команда на взлет. Дрон взлетает на высоту 1 м.
- В 5 м от дрона устанавливается препятствие в виде человека Дрону ставится миссия лететь на 7 метров вперед.
 - Дрон останавливается перед препятствием за 50 см.

- Запускается 2 раза еще весь цикл, где меняются расстояния и местоположения до объектов. Симуляция отключается
 - Проводится оценка результатов.

Также была проработана ситуация, когда дрон помещают над объектом, и дают команду посадки. Выводится сообщение, что посадка недоступна. Затем перемещают дрон в сторону от человека, и дают команду посадки. Дрон успешно садится [9].

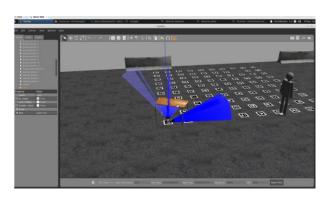


Рис. 6. Проверка ПО в симуляторе GAZEBO

Обсуждение

В результате проделанной работы было успешно разработано и проверено в симуляторе созданное программное обеспечение. При попытках перенести решение в натуру возникают проблемы с установкой фреймворка ROS на одноплатный компьютер Repka Pi [10]. Анализ результатов исследования показал, что разработанное решение проверено пока только в условиях моделирования и существует перспектива для его дальнейшего развития. Для того, чтобы выполнить проверку решения в натуре, необходимо установить фреймворк ROS на одноплатный компьютер Repka Pi или найти метод работы с датчиками без ROS.

Заключение

В результате проведенного исследования был выбран оптимальный набор сенсоров, необходимых для эффективного обнаружения препятствий и разработано ПО для обнаружения препятствия. А также полученный результат был проверен в симуляторе. Решены следующие задачи:

- рассмотрены теоретические аспекты, применимые к данной теме;
- составлены схемы работы устройств, с передаваемыми потоками данных;
- составлены варианты компоновок сенсоров для дрона, и выбраны наиболее оптимальные;
 - протестирована выбранная компоновка сенсоров в симуляторе.

Благодарности

Данная работа сделана в рамках федерального проекта «Кадры для беспилотных авиационных систем» государственной программы Российской Феде-

рации «Научно-технологическое развитие Российской федерации». В связи с этим хочется выразить благодарность и руководству проекта, руководству Сибирского государственного университета геосистем и технологий и Александру Петровичу Карпику за поддержку в ходе выполнения проекта. Также благодарность выражается членам команды, которые также принимали участие в решении поставленной задачи: Данилов Владислав Александрович, Строганов Данила Сергеевич, Пивкина Андриана Валерьевна, Демчук Евгений Валерьевич, Демидов Артем Владимирович.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Лебедев В.Ю. Управление беспилотными летательными аппаратами. М.: Наука, 2020. 320 с.
- 2. Минин, Р. А. Беспилотные летательные аппараты: Учет рисков и безопасность. Томск: Изд-во ТГУ, 2022. 275 с.
- 3. Петров И.И., Сидоров А.А. Системы автоматического управления дронами. СПб.: Политехника, 2019. 215 с.
- 4. Власов, С. А. Проблемы безопасности беспилотных летательных аппаратов. Санкт-Петербург: Питер, 2019. 180 с.
- 5. Кузнецов Д.А. Обнаружение препятствий для дронов: методы и подходы. Журнал робототехники. 2021. Т. 34, № 2. С. 45-58.
- 6. Лазарев, Е. В. Мультикоптеры: принципы работы и применения. Новосибирск: Сиб-MAC, 2021. 300 с.
 - 7. Баранов, И. П. Технологии управления дронами. Москва: Техносфера, 2020. 250 с.
- 8. POC. Официальный сайт: Электронный ресурс. URL: https://www.ros.org/ (дата обращения: 20.10.2024).
- 9. Gazebo. Официальный сайт: Электронный ресурс. URL: https://www.gazebo.info/ (дата обращения: 20.10.2024).
- 10. Repka.PI. Официальный сайт: Электронный ресурс. URL: https://repka-pi.ru/?yscl-id=ma2b48od3c109222131 (дата обращения: 01.11.2024).

© М. С. Исмаилова, В. Н. Никитин, 2025