К. С. Байков $^{1 \boxtimes}$, А. В. Паштецкий 2 , В. А. Крючкова 2

Растительные ресурсы России онлайн

¹Сибирский государственный университет геосистем и технологий, г. Новосибирск, Российская Федерация ²Главный ботанический сад имени Н. В. Цицина РАН e-mail: kbaikov2018@mail.ru

Аннотация. В настоящей публикации впервые анонсируется мультидисциплинарный сетевой научно-образовательный проект «Растительные ресурсы России онлайн». Первый этап выполнения проекта предусматривает создание актуального биогеоинформационного блока с авторизованным доступом в систему, возможностью создания общероссийского и региональных информационных модулей, проведения научно-образовательных мастер-классов, тематических семинаров, других вспомогательных функций. Биогеоинформационная научно-образовательная платформа «Растительные ресурсы России онлайн» в некоторых своих чертах сходна с интернет-ресурсом «Плантариум», при этом основным источником наполнения геоинформационных таблиц предусмотрен международный банк пространственных данных о биоразнообразии «iNaturalist».

Ключевые слова: растительность, ресурсные сосудистые растения, цветовая шкала

K. S. Baykov^{1 \boxtimes}, A. V. Pashtetskiy², V. A. Kryuchkova²

Plant resources of Russia online

¹Siberian State University of Geosystems and Technologies, Novosibirsk, Russian Federation ²Moscow Botanical Garden of Academy of Sciences, Moscow, Russian Federation e-mail: kbaikov2018@mail.ru

Abstract. This publication announces for the first time the multidisciplinary network scientific and educational project "Plant Resources of Russia Online". The first stage of the project involves the creation of an up-to-date biogeoinformation block with authorized access to the system, the ability to create all-Russian and regional information modules, conduct scientific and educational master classes, thematic seminars, and other auxiliary functions. The biogeoinformation scientific and educational platform "Plant Resources of Russia Online" is in some ways similar to the Internet resource "Plantarium", while the main source of filling the geoinformation tables is the international bank of spatial data on biodiversity "iNaturalist".

Keywords: vegetation, resource vascular plants, color scale

В настоящей статье описаны лишь общие контуры мультидисциплинарного сетевого научно-образовательного проекта «Растительные ресурсы России онлайн». Номенклатурный, он же таксономический модуль, синхронизирован с международным банком сведений о названиях растений Plants of the World Online (POWO) и содержит данные о латинских и русских названиях видов сосудистых растений России, представляющих особую ценность как ресурсные объ-

екты исследования. На первом этапе планируется ограничить их число списком из 75—100 видов. В качестве критериев отбора видов для включения в приоритетный список авторы предлагают общее число наблюдений на территории России и очевидный интерес к ним со стороны граждан России и региональных органов власти (деревья и кустарники, а также многолетние травы, имеющие хозяйственное значение как пищевые, кормовые, лекарственные, декоративные и др.).

В качестве наиболее значимых примеров таких растений приведем следующие: Сосна обыкновенная (*Pinus sylvestris*) 44196 наблюдений на дату 28.05.2025, Крапива двудомная (*Urtica dioica*) 33594 наблюдения, Одуванчик лекарственный (*Taraxacum officinale*) 31380 наблюдений, Клён ясенелистный (*Acer negundo*) 31004 наблюдения, Чистотел большой (*Chelidonium majus*) 27194 наблюдения, Мать-и-Мачеха (*Tussilago farfara*) 26612 наблюдений, Тысячелистник обыкновенный (*Achillea millefolium*) 26349 наблюдений, Бодяк полевой (*Cirsium arvense*) 26293 наблюдения, Клевер луговой (*Trifolium pretense*) 25586 наблюдений, Полынь обыкновенная (*Artemisia vulgaris*) 25050 наблюдений (рис. 1); список видов и статистические показатели наблюдений сгенерированы с помощью интернет-ресурса iNaturalist 28.05.2025).

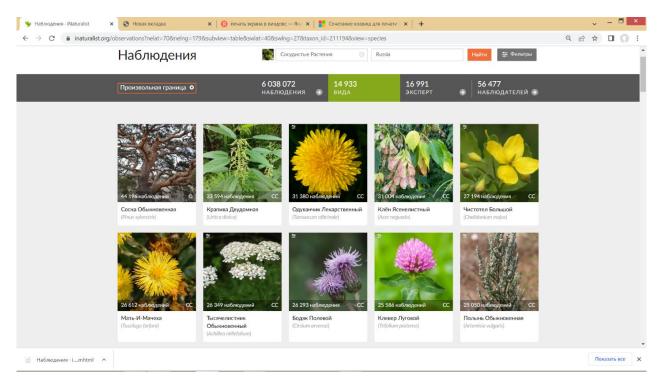


Рис. 1. Десять видов ресурсных сосудистых растений, лидирующих по числу наблюдений в России (более 25000 наблюдений для каждого вида).

Для оценки вероятности наблюдения вида в других точках потенциальной области распространения, в том числе в труднодоступных регионах, включая северные и арктические территории, а также горные системы, будут сгенерированы прогнозные климатические ареалы видов и составлено их подробное описание в высоком пространственном разрешении. Эта часть проекта будет выпол-

нена в профильных лабораториях научно-исследовательских институтов и высших учебных заведений Российской Федерации. Иллюстративный пример такого прогнозного ареала, сгенерированного методом максимальной энтропии для Сосны обыкновенной, представлен на рис. 2.

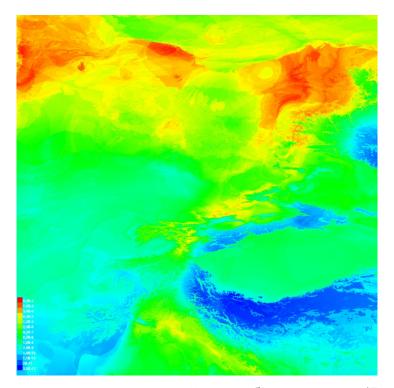


Рис.2. Фрагмент прогнозного ареала Сосны обыкновенной (*Pinus sylvestris*) в рамке координат 30.0–60.0 с.ш. и 60.0–90.0 в.д. Модель построена с учетом 19 биоклиматических предикторов. Цветовая шкала соответствия вероятности наблюдения вида в разных участках ареала представлена в нижнем левом углу рисунка. Наиболее благоприятные участки ареала локализованы в северной полосе фрагмента ареала и показаны красным цветом.

С помощью таких прогнозных моделей будут подготовлены описания участков ареала для каждого ресурсного вида сосудистых растений России: общая площадь, состояние локальных популяций, основанное на климатических особенностях мест их обитания, прогнозные значения биомассы, качества растительного сырья и другие количественные показатели, необходимые в ресурсоведении. Будут подготовлены списки локаций с наиболее высокими показателями, для которых будут проведены дополнительные натурные обследования. В результате будет достигнут высокий уровень научного прогноза, необходимый для принятия обоснованных управленческих решений как в масштабе государства, так и отдельных регионов, с учетом местных особенностей. Фрагмент такого списка с расчетными модельными значениями количественных показателей представлены в таблице 1. Модель построена с учетом 19 биоклиматических предикторов.

Количественные значения показателя вероятности наблюдения Сосны обыкновенной (*Pinus sylvestris*) в разных участках ареала вида (RP), рассчитанные для модели, построенной по 19 биоклиматическим предикторам. Представлены первые 15 локаций с наиболее высокими значениями показателя RP

1	2	3	4
1	56.832232	60.352066	0.008278241704905502
2	56.797014	60.550402	0.005965333369593627
3	56.801034	60.535993	0.005951091714495774
4	56.799678	60.527592	0.005923954694353879
5	56.788703	60.577258	0.005262896276015173
6	57.144340	73.144307	0.004515432665939962
7	56.887413	60.247355	0.004476858603886306
8	57.260509	72.495012	0.004398096347154123
9	57.252262	72.511058	0.004345989443903824
10	57.228097	72.517407	0.004317537286576668
11	57.228611	72.515629	0.004311058935439889
12	57.222329	72.514336	0.004296376428133646
13	56.946231	72.710144	0.004279223600591330
14	56.755778	60.668304	0.004275400587577672
15	56.944369	72.706308	0.004272776115631006

В таблице 1: 1 – порядковый номер локации; 2 – значение широты, в градусах; 3 – значение долготы, в градусах; 4 – значение вероятности наблюдения, сырое (raw prediction).

Наиболее высокие значения сырой вероятности (raw prediction, далее по тексту RP) характерны для локаций, расположенных в окрестностях Верх-Исетского водохранилища на западной окраине Екатеринбурга (таблица 1, локация 1, RP=0.008278), а также в Юго-Западном лесопарке города Тюмень (таблица 1, локации 2–4, 0.00597>RP>0.00526). Значения вероятности наблюдения Сосны обыкновенной в других локациях модельного участка ареала вида не превышают 0.005. В состав первых 20 локаций с высокими значениями вероятности наблюдения ресурсного вида, вошла также группа локаций, расположенных на севере Омской области между поселком Тевриз и селом Большие Уки (таблица 1, локации 8–13; 0.00439>RP>0.00427).

Для детализированной оценки влияния гидротермического режима на рост и развитие растений ресурсных видов мы рекомендуем для построения климатических прогнозных моделей их распространения дополнительно к набору биоклиматических предикторов применять набор 48 климатических предикторов. Фрагмент такого прогнозного ареала для Сосны обыкновенной (*Pinus sylvestris*) в рамке координат 30.0 – 60.0 с.ш. и 60.0 – 90.0 в.д. для модели, построенной с учетом 19 биоклиматических и 48 климатических предикторов, представлен на рисунке 3. При их общей внешней сходности (рис. 2), модель, построенная с учетом 19 биоклиматических и 48 климатических предикторов, характеризуется более высокой пространственной детализацией. Изменился набор и последователь-

ность локаций с наиболее высокими значениями вероятности наблюдений. Так, лидирующие позиции заняла компактная пространственная группа локаций, расположенных на севере Омской области в обширных массивах заболоченных березово-сосновых лесов между поселком Тевриз и селом Большие Уки (таблица 2, локации 1–11; 0.00467>RP>0.00414). За данной группой локаций следует другая, расположенная заметно южнее и восточнее — в окрестностях Новосибирского Академгородка, примыкает с запада к университетскому городку, так называемые Лисьи горки (таблица 2, локации 12 – 15; 0.00416>RP>0.00406).

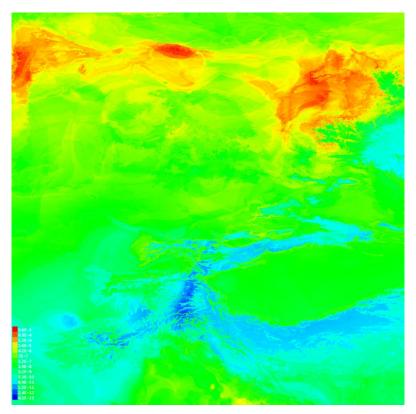


Рис. 3. Фрагмент прогнозного ареала Сосны обыкновенной (*Pinus sylvestris*) в рамке координат 30.0–60.0 с.ш. и 60.0–90.0 в.д. для модели, построенной с учетом 19 биоклиматических и 48 климатических предикторов. Цветовая шкала соответствия вероятности наблюдения вида в разных участках ареала представлена в нижнем левом углу рисунка. Наиболее благоприятные участки ареала локализованы в северной полосе фрагмента ареала и показаны красным цветом.

Следовательно, полученные пространственные модели высокого разрешения, сопоставленные со значениями вероятности наблюдений растений ресурсного вида в разных участках ареала, позволяют установить участки, имеющие высокий потенциал как источники генофонда вида, реализованного в наиболее благоприятных условиях среды обитания.

Количественные значения показателя вероятности наблюдения Сосны обыкновенной (*Pinus sylvestris*) в разных участках ареала вида (RP), рассчитанные для модели, построенной по 19 биоклиматическим и 48 климатическим предикторам. Представлены первые 15 локаций с наиболее высокими значениями показателя RP.

1	2	3	4
1	57.255354	72.507765	0.004664837548673709
2	57.276852	72.209490	0.004281839524168655
3	57.291516	72.242797	0.004254486587158818
4	57.282614	72.197575	0.004250966307929567
5	57.228802	72.516810	0.004243357274197387
6	57.225465	72.506588	0.004212761525345394
7	57.290158	72.209281	0.004207263329435462
8	57.270916	72.238108	0.004200303799066851
9	57.274008	72.243353	0.004188730155155965
10	57.224166	72.514298	0.004144116676067991
11	57.265837	72.229887	0.004061371007543805
12	54.842234	83.074808	0.004046092328394746
13	54.848245	83.076095	0.004057183286060666
14	54.852051	83.081361	0.004067675600646479
15	54.875338	83.085734	0.004160846717018003

В таблице 2: 1 – порядковый номер локации; 2 – значение широты, в градусах; 3 – значение долготы, в градусах; 4 – значение вероятности наблюдения, сырое (raw prediction).

Мультидисциплинарный сетевой научно-образовательный проект «Растительные ресурсы России онлайн» направлен на формирование экспертного сообщества, способного ответить на современные вызовы экономического развития России в сфере рационального использования и воспроизводства растительных ресурсов России. Ядром программы станет информационный блок, позволяющий оперативно, в режиме онлайн, генерировать ответы на актуальные запросы: что, где, в каком количестве, в каком качестве, имеется в распоряжении субъекта, округа и суммарно Российской федерации. Особое внимание будет сосредоточено на восстановлении растительных ресурсов вокруг крупных промышленных комплексов, обеспечивающих добычу и переработку полезных ископаемых. При выполнении программы будут активно задействованы инструменты и средства искусственного интеллекта. Специализированный робот будет производить подсчет площадей ареалов ресурсных видов, производить мониторинг таких площадей в краткосрочной ретроспективе и среднесрочной перспективе, по индикаторам растительного покрова рассчитывать запасы лесных, луговых, степных, почвенных ресурсов, решать специализированные задачи для принятия эффективных решений по управлению территориальными комплексами.

Образовательный модуль проекта предполагает проведение мастер-классов в государственных учреждениях среднего и высшего образования. Планируется

удвоение числа натуралистов-наблюдателей, регистрирующих новые места произрастания видов растений каждые пять лет. На данный момент их численность превысила 56 тысяч человек.

Биоресурсный блок программы включает научно-образовательную деятельность сети ботанических садов России, университетов России и федеральных научных центров, других научных учреждений. Основу этой деятельности составляют биоресурсные коллекции живых растений и гербарных фондов, их содержание, хранение, управление, цифровизация.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Плантариум: Растения и лишайники России и сопредельных стран. URL: https://www.plantarium.ru (дата обращения: 26.05.2025).
- 2. iNaturalist: A Community for Naturalists. URL: https://www.inaturalist.org (accessed: May 19, 2025).
 - 3. Plants of the World Online. URL: https://powo.science.kew.org (accessed: May 15, 2025).
- 4. Phillips S. J. A brief tutorial on Maxent. Network of conservation educators and practitioners, center for biodiversity and conservation, American Museum of Natural History // Lessons in Conservation. 2009. Vol. 3. P. 108–135. URL: https://www.amnh.org/content/download/141371/2285439/file/LinC3 SpeciesDistModeling Ex.pdf (дата обращения: 22.05.2025).
- 5. Коросов А. В. О применении алгоритмов Maxent в экологии // Принципы экологии. 2024. №1. С. 80—96. DOI 10.15393/j1.art.2024.14742
- 6. WorldClim. Maps, graphs, tables, and data of the global climate. URL: https://worldclim.org (accessed: May 05, 2025).

© К. С. Байков, А. В. Паштецкий, В. А. Крючкова, 2025