$A. C. Толстиков^{1, 2*}, A. C. Томилов^{2}, Л. В. Шмидт^{2}$

Локальная поверочная схема передачи единиц времени и частоты по каналам ГНСС

¹ Сибирский государственный университет геосистем и технологий, г. Новосибирск, Российская Федерация

² Западно-Сибирский филиал ФГУП «ВНИИФТРИ», г. Новосибирск, Российская Федерация

*e-mail: tolstikov@sniim.ru

Аннотация. В работе обсуждается возможность передачи эталонных единиц времени и частоты по каналам спутниковых навигационных систем в интересах метрологического обеспечения наземных систем. Функции рабочих эталонов второго разряда в предлагаемой поверочной схеме выполняют бортовые часы орбитальной группировки навигационных спутников. Потребитель частотно-временной информации получает эталонные единицы времени и частоты непосредственно от аппаратуры, принимающей навигационные сигналы спутников.

Ключевые слова: поверочная схема, время и частота, передача эталонных единиц, навигационные системы

A. S. Tolstikov 12*, A. S. Tomilov 2, L. V. Schmidt 2

Local Verification Scheme for Transmitting Time and Frequency Units via GNSS Channels

Abstract. The paper discusses the possibility of transmitting reference units of time and frequency through the channels of satellite navigation systems in the interests of metrological support for ground-based systems. The functions working standards of the second category in the proposed verification scheme are performed by the on-board clocks of the orbital constellation of navigation satellites. The consumer of time-frequency information receives reference units of time and frequency directly from the equipment that receives satellite navigation signals.

Keywords: verification scheme, time and frequency, transmission of reference units, navigation systems

Введение

Частотно-временные измерения в настоящее время являются наиболее точными и востребованными. Принципы построения спутниковых навигационных систем опираются на использование для дальномерных измерений аппарата частотно-временных технологий: высокоточных измерений временных интервалов

при прохождении навигационных сигналов в пространстве и согласования с высокой точностью моментов шкал времени часов, участвующих в измерениях.

Растущие требования к точностным характеристикам результатов частотновременных измерений и расширение области применения этих результатов приводят к необходимости совершенствования методов получения измерительной информации и расширения системы метрологического обеспечения измерений данного вида.

В современных условиях реализации рассматриваемой измерительной задачи наблюдается расширение области применения поверочных схем [1,2] передачи размеров единиц времени и частоты. Такая тенденция, главным образом, наблюдается при создании рабочих эталонов для средств измерений времени и частоты. Традиционно, в качестве таких рабочих эталонов применяются квантовые стандарты частоты, требующие создания специальных условий эксплуатации и отличающиеся достаточно высокой стоимостью.

В предлагаемой работе в качестве альтернативы квантовым стандартам частоты предлагается использовать приемники навигационных сигналов ГНСС, обладающие достаточными для рабочих эталонов метрологическими характеристиками и имеющие меньшую стоимость по сравнению с квантовыми стандартами частоты.

Передача эталонных единиц времени и частоты

Ведущую роль в рассматриваемой поверочной схеме играет центральный синхронизатор спутниковой системы (ЦС) (рис. 1.), имеющий статус вторичного эталона в Государственной поверочной схеме для средств измерений времени и частоты [2]. Основные каналы передачи частотно-временной информации от первичного эталона ГЭТ1-22 к ЦС ГНСС – перевозимые квантовые часы (ПКЧ) и телевизионные каналы (TV). Характеристики погрешностей передачи в ЦС ГЛОНАСС размеров единиц времени, частоты и национальной шкалы времени определяются в соответствии с Государственной поверочной схемой [2].

Следующим уровнем локальной поверочной схемы (см. рис. 1) являются бортовые часы орбитальной группировки навигационных спутников (ОГ НС) ГЛОНАСС. Ансамбль этих часов следует трактовать как групповой пространственно-разнесенный рабочий эталон единиц времени, частоты и национальной шкалы времени. Характеристики точности передачи указанных частотно-временных параметров определяются в интерфейсном контрольном документе ГЛОНАСС [3].

Эта частотно-временная информация формируется для ОГ НС в наземном комплексе управления системой (НКУ) по заданным размерам единиц времени и частоты от ЦС ГЛОНАСС и через станции закладки измерительной информации (СЗИ) поступает на навигационные спутники ГЛОНАСС в виде блоков эфемеридно-временной информации (ЭИ) и оперативной информации (ОИ) о состоянии системы.

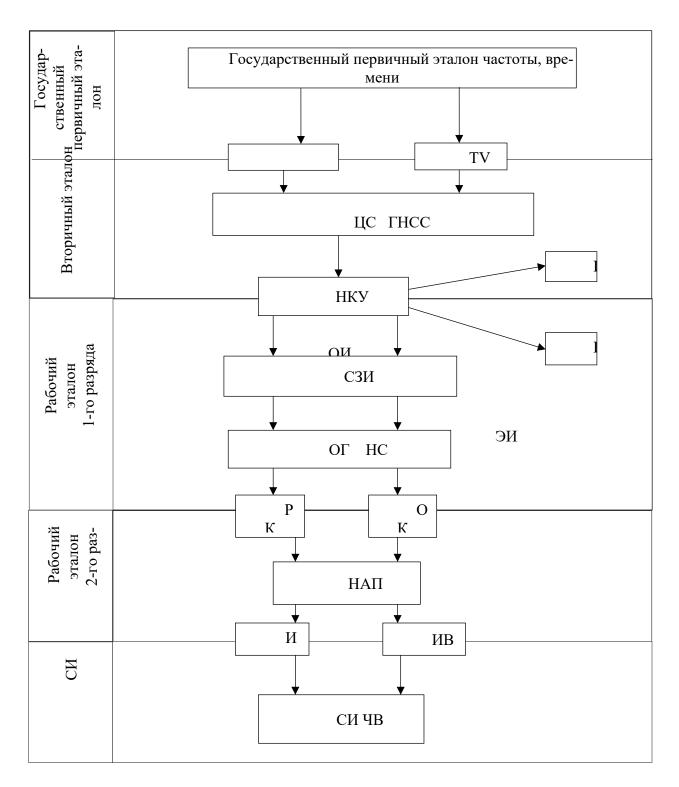


Рис. 1. Поверочная схема (локальная) для средств измерений времени и частоты

Эфемероидно-временная информация необходима для размещения в операционных системах навигационных спутников (ОГ НС). Эта информация формируемся на основе результатов траекторных измерений, получаемых из беззапросных измерительных станций (БИС) и станций лазерных дальномерных измерений. База данных формируется по всей орбитальной группировке навигацион-

ных спутников ОГ НС. Для вычисления параметров движения навигационных спутников и параметров моделей нестабильности бортовых часов, определяющих состав блока эфемероидно-временной информации (ЭИ), используется информация о частотно-временных параметрах системы от ЦС ГНСС, и привлекаются данные о параметрах вращения Земли (ПВЗ) и о состоянии гравитационного поля Земли (ГПЗ).

Таким образом, орбитальную группировку навигационных спутников ОГ НС ГЛОНАСС, ретранслирующих частотно-временную информацию об эталонных значениях единиц времени и частоты на текущем значении национальной шкалы времени потребителю, можно определить как Pабочий эталон 1-го разряда.

От части орбитальной группировки навигационных спутников, находящейся в радиовидимой части пространства, формируется информация об эталонных значениях единиц времени и частоты в конкретном моменте реализации национальной шкалы времени. Эта измерительная информация в составе навигационных сигналов поступает к приемникам навигационных сигналов – в навигационную аппаратуру пользователя (НАП), которая в предлагаемой локальной поверочной схеме представляет собой *Рабочий эталон 2-го разряда*.

В навигационной аппаратуре пользователя генерируется последовательность импульсов с периодом следования 1 с — сигнал 1PPS. Этот сигнал является физической реализацией эталонной единицы времени. Фаза сигнала 1PPS согласована с текущим моментом национальной шкалы времени, с погрешностями, зависящими от типа применяемой аппаратуры НАП. Как правило, погрешность воспроизведения национальной шкалы времени не превышает 1 мкс.

Контроль точности передачи значений эталонных единиц времени и частоты потребителям при выполнении поверочных и калибровочных работ СИ ЧВ обеспечивается с помощью измерителей интервалов времени (ИВ) и измерителей частоты (ИЧ).

Повышение точности передачи потребителю частотно-временной информации достигается путем компенсации факторов, которые влияют на точность результатов измерений. К таким факторам следует отнести изменение скорости (задержку) передачи навигационного сигнала в тропосферном и ионосферном слоях околоземного пространства, факторы релятивистской и гравитационной природы. В этом случае строятся математические модели перечисленных факторов, по результатам траекторных измерений идентифицируются параметры этих математических моделей, и рассчитываются соответствующие компенсирующие поправки.

Повышению точности передачи потребителю эталонных единиц времени и частоты также будет способствовать применение вместо бортовых эфемерид навигационных спутников некоторых апостериорных эфемерид, предоставляемых центрами мониторинга ГНСС, в частности, центрами ИАЦ и СВОЭВП [4].

Заключение

Необходимо отметить, что состав оборудования, предусмотренного предлагаемой локальной поверочной схемой, наряду с описанной схемой передачи единиц времени и частоты потребителю, позволяет реализовать высокоточные методы передачи этих эталонных единиц. В частности, применение дифференциального метода при сравнении значений шкал времени пространственно-разнесенных часов *Common View* [5] позволяет уменьшить погрешность такого сравнения шкал времени до 10 нс.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. ГОСТ 8.129–2013. Государственная поверочная схема для средств измерения времени и частоты. М.: Стандартинформ, 2014. [Электронный ресурс]. Режим доступа: https://protect.gost.ru/document.aspx? control=7&id=184337 (дата обращения: 13.05.2024).
- 2. Государственная поверочная схема для средств измерения времени и частоты. Утверждена приказом Федерального агентства по техническому регулированию и метрологии от 26 сентября 2022 г. № 2360. [Электронный ресурс]. Режим доступа: https://www.gost.ru/portal/gost/home/activity/documents/orders#/order/370259 (дата обращения: 13.05.2024).
- 3. Глобальная навигационная спутниковая система ГЛОНАСС. Интерфейсный контрольный документ. M., 1998. 74 с.
- 4. Глобальная навигационная спутниковая система ГЛОНАСС. Система высокоточного определения эфемерид и временных поправок. (СВОЭВП). Интерфейсный контрольный документ. ОАО «Научно-производственная корпорация «Системы прецизионного приборостроения»». М., 2011. 120 с.
- 5. Allan D. W., Thomas C. Technical directives for standardization of GPS time receiver software. Metrologia 31, 1994. P. 69–79.

© А. С. Толстиков, А. С. Томилов, Л. В. Шмидт, 2024