$M. A. Карасюк^{1}, C. Ю. Кацко^{1*}, И. П. Кокорина^{2}$

Геоинформационное обеспечение геологического исследования Курганской области

¹ Сибирский государственный университет геосистем и технологий, г. Новосибирск, Российская Федерация

² Институт систематики и экологии животных СО РАН, г. Новосибирск, Российская Федерация

* e-mail: s.katsko@ssga.ru

Аннотация. В статье рассматривается использование геоинформационных систем в геологических исследованиях на примере создания карты общей минерализации подземных вод для цифрового эколого-географического атласа Курганской области. Авторы описывают проблему отсутствия в открытом доступе геоинформационных систем геологического профиля и предлагают разработать цифровую карту общей минерализации первого от поверхности водоносного комплекса в масштабе 1:1 250 000, используя свободную кроссплатформенную геоинформационную систему QGIS. Результаты исследования могут быть полезны для дальнейшего изучения геологии и экологии Курганской области.

Ключевые слова: карта минерализации, геологическое строение, полезные ископаемые

M. A. Karasyuk¹, S. Yu. Katsko¹*, I. P. Kokorina²

Geoinformation Support for Geological Research of the Kurgan Region

¹ Siberian State University of Geosystems and Technologies, Novosibirsk, Russian Federation ² Institute of Systematics and Ecology of Animals, Novosibirsk, Russian Federation * e-mail: s.katsko@ssga.ru

Abstract. The article discusses the use of geographic information systems (GIS) in geological research, using the example of creating a map of the general mineralization of groundwater for the digital ecological-geographical atlas of the Kurgan region. The authors describe the problem of the lack of open access GIS systems of a geological profile and propose to develop a map of the general mineralization of the first water-bearing complex from the surface. The authors used the free crossplatform GIS system QGIS and created a digital map on a scale of 1:1 250 000. The research results can be useful for further study of the geology and ecology of the Kurgan region.

Keywords: mineralization map, geological structure, mineral resources

Введение

В настоящее время в геологических исследованиях широко используются геоинформационные системы [1, 2]. При этом в Зауралье нет обобщенной картографической базы эколого-географической информации, что является проблемой, которую предлагается решить в настоящем исследовании.

Целью исследования является разработка карты общей минерализации подземных вод для цифрового эколого-географического атласа Курганской области.

Для достижения поставленной цели необходимо решить следующие задачи:

- изучить геологию, тектонику и полезные ископаемые картографируемой территории;
 - выбрать программное обеспечение;
- создать картографическую основу проектируемой геоинформационной системы геологического строения Курганской области;
- создать карту общей минерализации первого от поверхности водоносного комплекса Курганской области;
 - разработать атрибутивную таблицу тематических слоев.

Методы и материалы

Территория Курганской области находится в пределах Урало-Монгольского геосинклинального складчатого пояса, который в России является единственным поясом, полностью завершившим геосинклинальное развитие в начале мезозоя. В южных и восточных районах пояса в неоген-четвертичное время проявились орогенные процессы. В пределах пояса расположена Западно-Сибирская плита с мезозойско-кайнозойским чехлом — поле развития юрско-неогеновых отложений в пределах Западно-Сибирской низменности [3–5].

Территория Курганской области расположена на площади развития Нижневартовско-Петропавловской подпровинции Западно-Сибирской провинции бассейна пластовых вод. Западная часть входит в состав Западно-Тобольского бассейна Восточно-Предуральской группы бассейнов пластовых вод; восточнее реки Тобол развиты Восточно-Тобольский и Петуховский бассейны Ишимской группы бассейнов пластовых вод. Граница между ними проходит по линии поверхностного водораздела рек Тобол и Ишим.

В вертикальном разрезе слоистой системы бассейнов стока пластовых вод выделяют три гидродинамические зоны: весьма затрудненного, затрудненного и активного водообмена. В верхнюю зону активного водообмена входят континентальные и морские водоносные отложения палеоцена — нижнего эоцена, в том числе водоносный комплекс аллювиальных отложений долин рек Тобол, Исеть, Миасс, их притоков, а также аллювиальные отложения древних речных долин, образующие единый водоносный комплекс с отложениями олигоцена. Уровень подземных вод — 0,5—3,5 м, на более высоких участках — до 10 м. Водоносные горизонты средней и нижней гидродинамических зон залегают на глубинах от 100 до 250 м и более на востоке.

Минерализация подземных вод четвертичных аллювиальных отложений изменяется от 0,4 до 13 г/л. В долине р. Тобол для аллювиального комплекса характерно большое развитие солоноватых и соленых вод.

По распределению минерализации подземных вод в этом горизонте территория делится на два района: западный район — минерализация до 1,5 г/л; восточный район — минерализация до 10 г/л. Увеличение к востоку минерализации и изменение химического состава связано с ослаблением питания и общим затуханием гидродинамической активности. По направлению к востоку гидрокарбонатно-сульфатные воды сменяются солоноватыми хлоридно-гидрокарбонатными и гидрокарбонатно-хлоридными. Сплошное распространение соленых вод с минерализацией более 3 г/л отмечено в восточных районах. В долинах граница проходит по р. Тобол, на водораздельных пространствах она смещается к западу.

Кроме региональной изменчивости качества подземных вод, для палеоценнижне воденового водоносного горизонта проявляется вертикальная гидрохимическая зональность, выражающаяся в увеличении минерализации с глубиной [6, 7].

Минерально-сырьевая база Курганской области представлена запасами 21 вида полезных ископаемых. Наиболее значимую роль играют разрабатываемые месторождения глин, строительного песка, урана, песчано-гравийных пород, строительного камня, лечебных грязей, подземных минеральных и пресных вод. Территориальным балансом запасов общераспространенных полезных ископаемых Курганской области учтено 267 месторождений.

Курганская область относится к Зауральскому урановорудному району и является одной из трех уранодобывающих провинций России. Выявлены Далматовское, Добровольное, Хохловское месторождения и ряд рудопроявлений урана в других районах. Прогнозные ресурсы урана оцениваются в 120–130 тыс. т [7, 8].

Для создания проекта предпочтение отдано программному обеспечению QGIS, так как это свободная, кроссплатформенная геоинформационная система, имеющая большое количество подключаемых модулей.

Цифровая карта выполнена в системе координат WGS84 зона 41 в масштабе 1:1 000 000 и содержит следующие слои: гидрография линейная; гидрография площадная; населенные пункты; автомобильные дороги; железные дороги; границы административных районов, Курганской области, государственная граница РФ; рельеф; растительность и грунты; геология; тектоника; подземные воды; полезные ископаемые.

Структура базы данных проектируемой ГИС представлена в табл. 1.

Таблица 1 Структура базы данных

Группа слоев	Название слоя	Тип
Гидрография	Гидрография линейная	линейный
	Гидрография площадная	площадной
Населенные пункты	Населенные пункты	точечный
Пути сообщения	Автомобильные дороги	линейный
	Железные дороги	линейный
Границы	Граница Курганской области	линейный
	Границы административных районов	линейный
	Государственная граница РФ	линейный
Рельеф	Рельеф	площадной
Растительность и грунты	Растительность и грунты	площадной
Геология	Геология	площадной
Тектоника	Тектоника	площадной
Подземные воды	Подземные воды	площадной
Полезные ископаемые	Полезные ископаемые	точечный

Результаты

Можно выделить следующие результаты работы:

- изучены геология, тектоника и полезные ископаемые картографируемой территории;
 - выбрано программное обеспечение;

- создана картографическая основа проектируемой геоинформационной системы геологического строения Курганской области;
- создана карта общей минерализации первого от поверхности водоносного комплекса Курганской области;
 - разработана атрибутивная таблица тематических слоев.
 Результаты работы представлены на рис. 1, 2.

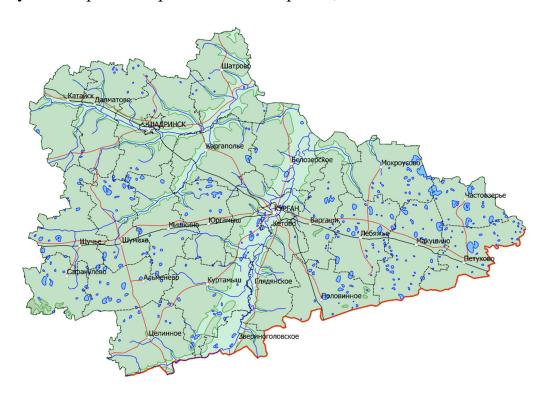


Рис. 1. Картографическая основа проектируемой ГИС

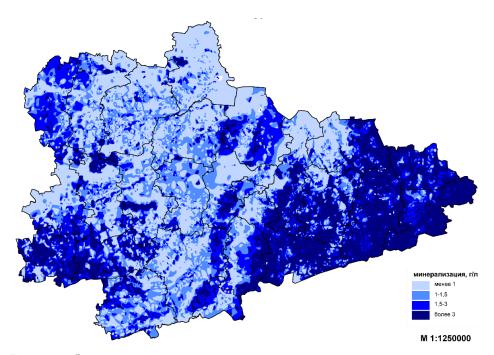


Рис. 2. Карта общей минерализации первого от поверхности водоносного комплекса Курганской области

Заключение

В ходе работы собрана информация о геологическом строении Курганской области. Разработанные картографическая основа и тематическая карта минерализации подземных вод в дельнейшем будут использованы для создания ГИС эколого-географического атласа Курганской области. Работая с этой ГИС, специалисты смогут проводить анализ геологической информации и сведений о полезных ископаемых на территории Курганской области.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Кацко С. Ю., Ильин Д. А., Карасюк М. А. Разработка веб-ГИС «Отложения ордовикского периода северо-востока Горного Алтая» // Вестник СГУГиТ. Т. 27, № 6. Новосибирск: СГУГиТ, 2022. С. 131-140. DOI 10.33764/2411-1759-2022-27-6-131-140.
- 2. Кокорина И. П., Карасюк М. А., Ильин Д. А. Картографическое обеспечение исследований на геологических разрезах горного Алтая // Регулирование земельно-имущественных отношений в России: правовое и геопространственное обеспечение, оценка недвижимости, экология, технологические решения. Сборник материалов V национальной научно-практической конференции. Ч. 2. Новосибирск: СГУГиТ, 2022. С. 51-56.
- 3. Науменко Н. И., Завьялова О. Г., Акимова Т. Г. География Курганской области: Краеведческое пособие. Курган: КГУ, 2019. 276 с.
- 4. Коровко А. В., Двоеглазов Д. А., Кузовков Г. Н. Государственная геологическая карта Российской Федерации. Масштаб 1: 200 000. Издание второе. Серия Среднеуральская. Лист О-41-ХХХІІ. Объяснительная записка. Москва: МФ ВСЕГЕИ, 2015. 274 с.
- 5. Завьялова О. Г., Коваль А. Е. Региональное природопользование (на примере Курганской области): Учеб. пособие. Курган: Курганский гос. ун-т, 2008. 198 с.
- 6. Объяснительная записка к атласу специализированных гидрогеологических карт первого от поверхности водоносного комплекса по территории Курганской области в масштабе 1: 200 000. В. Пышма: АООТ «Средне-Уральская геологоразведочная экспедиция», 1995. 35 с
- 7. Недропользование Департамент природных ресурсов и охраны окружающей среды Курганской области. URL: http://www.priroda.kurganobl.ru/3580.html (дата обращения 02.11.2022).
- 8. Буданов Н. Д. Особенности геологического строения и гидрогеологическая карта Урала. Свердловск: Типография изд-ва «Уральский рабочий», 1970. 80 с.

© М. А. Карасюк, С. Ю. Кацко, И. П. Кокорина, 2023