Технологические решения при создании спутникового сегмента информационной системы мониторинга наводнений в бассейне р. Волга

В. В. Дерюгина¹*, Е. В. Василенко¹, В. А. Кровотынцев¹, А. В. Кухарский¹

¹ Научно-исследовательский центр космической гидрометеорологии «Планета», г. Москва, Российская Федерация

* e-mail: z-victoria@yandex.ru

Аннотация. В ФГБУ «НИЦ «Планета» разработан спутниковый сегмент информационной системы мониторинга и прогнозирования наводнений в бассейне р. Волга («ГИС Волга»). Спутниковый сегмент содержит веб-сервисы данных высокого и среднего пространственного разрешения с российских и зарубежных космических аппаратов серии «Канопус-В», серии «Метеор М», серии «Sentinel-1», серии «Sentinel-2», «ЕОS», «SUOMI NPP», «NOAA-20», а также спутниковую информационную продукцию (относительная влажность почвы, суточная сумма осадков, снежный покров и др.). При этом пользователь получает быстрый доступ в информационной системе «ГИС Волга» ко всем видам спутниковой, наземной, прогностической информации в режиме, близком к реальному времени, для принятия своевременных решений по уменьшению последствий от наводнений.

Ключевые слова: спутниковые веб-сервисы, мониторинг гидрологической обстановки бассейна р. Волга, информационная система «ГИС Волга», спутниковые изображения, геоинформационные технологии

Technological Solutions Used of the Development Segment of the Flood Monitoring Information System in the Volga River Basin

V. V. Deryugina^{1*}, E. V. Vasilenko¹, V. A. Krovotintsev¹, A. V. Kukharsky¹

Research Center for Space Hydrometeorology «Planeta», Moscow, Russian Federation

* e-mail: z-victoria@yandex.ru

Annotation. A satellite segment of the flood monitoring and forecasting information system in the Volga River basin (GIS Volga) has been developed at the Federal State Budget Institution «Scientific-research center for space hydrometeorology «Planeta». The satellite segment contains web services of high and medium spatial resolution data of Russian and foreign spacecraft of the Canopus-B series, Meteor M series, Sentinel-1 series, Sentinel-2 series, EOS, SUOMI NPP and NOAA-20 series, as well as satellite information products (relative soil moisture, daily precipitation, snow cover, etc.). User gets quick access in near real-time mode to all types of satellite, ground-based, predictive information in the GIS Volga information system to make timely decisions to reduce the consequences of floods.

Keywords: satellite web services, monitoring of the hydrological situation of the Volga River basin, GIS Volga information system, satellite images, geoinformation technologies

Введение

В рамках проекта «Модернизация и техническое перевооружение учреждений и организаций Росгидромета» Гидрометцентром России и научно-исследовательским центром космической гидрометеорологии «Планета» (НИЦ «Пла-

нета») была разработана система мониторинга, прогнозирования и раннего оповещения о наводнениях «ГИС Волга» [1-3]. Система была создана на основе ГИС- ВЕБ- технологий. В единой информационной среде были интегрированы наземные гидрометеорологические, синоптические, агрометеорологические данные и данные снегомерных маршрутов, гидрологические и метеорологические расчеты прогнозов, справочная и другая дополнительная информация по бассейну р. Волга, имеющаяся в Гидрометцентре России. ГИС часть системы реализована в едином серверном и настольном исполнении на платформе промышленного уровня ArcGIS (ESRI), база данных создавалась с использованием СУДБ SQL Server 2014 (Microsoft). Спутниковые данные были подключены к системе «ГИС Волга» с помощью открытых веб-сервисов ArcGIS online с общедоступной информацией космических аппаратов (KA) «EOS», «Landsat-8», «SUOMI NPP», «NOAA-20». Также были подключены веб-сервисы с русифицированными топографическими картами и мозаиками Bing maps, Google maps, OpenStreetMap, Yandex maps, ESRI maps, которые используются в системе «ГИС Волга» в качестве картографической основы. Для доступа пользователей ко всему массиву информации было разработано веб-приложение (интерфейс пользователя). Оно разрабатывалось с использованием API ArcGIS Web AppBuilder for Developer, что сделало возможным вход пользователей в систему через обычный веб-браузер с любого медианосителя (компьютера, смартфона, планшета и др.), имеющих доступ в Internet.

НИЦ «Планета» развивает информационную систему «ГИС Волга» в части разработки спутникового сегмента. В целях обеспечения единой идеологии построения системы и высокой совместимости ее элементов спутниковый сегмент создавался на технических средствах НИЦ «Планета» и аналогичного программного обеспечения, используемого в Гидрометцентре России.

Спутниковый сегмент системы «ГИС Волга»

В НИЦ «Планета» на собственные приемные станции ведется регулярный прием и обработка спутниковых данных с 11 отечественных КА, включая Электро-Л № 2 и №3, Метеор-М № 1, № 2 и №2-2, Канопус-В №3, №4, №5 и №6, Канопус-В-ИК, Ресурс-П № 1, а также 24 зарубежных КА серий NOAA, Метор, ЕОЅ Тегга/Аqua, Suomi NPP, Meteosat, GOES, Himawari и др [4]. Кроме того, НИЦ «Планета» оперативно получает данные с зарубежных гидрометео-рологических космических аппаратов по системе международного обмена EARS (ЕИМЕТЅАТ Advanced Retransmission Service), в которую организация входит с 2009 г. (в соответствии с соглашениями Росгидромет — ЕИМЕТЅАТ от 2009 г. и Минприроды России - ЕИМЕТЅАТ от 2015 г. и от 2020 г.) [4].

Для обеспечения задачи мониторинга гидрологической обстановки бассейна р. Волга был создан спутниковый сегмент системы «ГИС Волга» в виде аппаратно-программного комплекса, выполняющего полный цикл обработки данных от приема и сбора информации на заданный район с различных спутниковых систем, первичной и тематической обработки, анализа данных, наполнения базы данных, до создания выходной продукции в виде веб-сервисов и пред-

ставление ее удаленным пользователям в среде Internet. Основная обработка и анализ данных происходит на нескольких серверах: ГИС сервер, сервер базы данных, веб-сервер. Публикация веб-сервисов происходит на ГИС сервере, а в базу данных автоматически поступает новая актуальная информация. Процесс хранения в базе данных организован следующим образом. Для спутниковых изображений в базе хранятся ссылки на снимки и метаданные, а сами изображения находятся на ГИС сервере в формате GeoTIFF. Для векторных данных представленных в узлах регулярной сетки создаются связанные между собой таблица с постоянно пополняемыми новыми данными и векторный слой регулярной сетки. Для векторных данных с функцией агрегации создается связанная таблица с постоянно обновляем параметрами и несколько векторных слоев с гексагональной сеткой, в которых автоматически производится расчет усредненных значений. Агрегация данных особенно актуальна для мультимасштабного представления данных, когда на крупном масштабе карты отображается исходное значение данных, а на мелком — усредненное значение в соответствии с масштабом карты.

В виде веб-сервисов в спутниковом сегменте системы «ГИС Волга» реализованы данные высокого и среднего пространственного разрешения с космических аппаратов «Канопус-В» №3, №4, №5 и №6, «Канопус-В-ИК», «Метеор М» №2, «Meteop M» №2-2, «Sentinel-1A», «Sentinel-1B», «Sentinel-2A», «Sentinel-2В», «Aqua», «Terra», «SUOMI NPР» и «NOAA-20» (рис. 1-2). Пополнение спутниковых веб-сервисов актуальной информацией производится автоматически с помощью специализированных программ (разработанных на языке программирования Python), в которых реализована потоковая обработка данных с операцией распараллеливания (одновременно обрабатываются 3-4 спутниковых снимка). Программы производят сбор спутниковых данных с серверов первичной обработки НИЦ «Планета» и/или автоматическое скачивание спутниковых данных (KA серий «Sentinel-1» и «Sentinel-2») из каталогов Европейского космического агентства по заданному региону и метеоусловиям (наличие облачности менее 60 % на снимке), также программы производят улучшение визуальных свойств спутниковых изображений, переносят изображения в базу данных, формируют метаданные с описанием информации, создают тайлы и пирамидальные слои. Последняя операция доступна только в системах платформы ArcGIS: позволяет существенно ускорить визуализацию данных на экране монитора пользователя при выполнении операций масштабирования и перемещения по полю снимка. Значительно сокращается время доведения информации до пользователя за счет того, что попадая в базу данных спутниковые изображения сразу становятся доступны пользователю (не требуется применять дополнительных операций для их размещения в веб-сервисах, как это реализовано при использовании «открытых» платформ). Кроме того, веб-сервисы со спутниковыми изображениями отображают данные с исходным пространственным разрешением при достаточно высокой скорости визуализации.

В виде веб-сервисов в спутниковом сегменте системы «ГИС Волга» организованы спутниковые информационные продукты — относительная влажность

почвы, осадки за сутки, снежный покров, водный эквивалент снежного покрова, зоны увлажнения/переувлажнения водой и др.

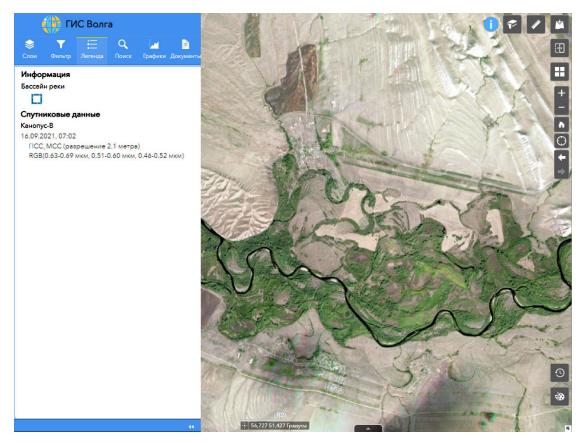


Рис. 1. Спутниковое изображение «Канопус-В» от 16.09.2021 г. (7:02 UTC) в системе «ГИС Волга»

Часть информационных продуктов (относительная влажность почвы, водный эквивалент снежного покрова, снежный покров и др.) поступает по системе международного обмена спутниковой информацией EUMETCAST с оперативностью представления информации – 1,5 часа. Продукты создаются отдельными группами разработчиков EUMETCAST по спутниковым данным. Так, Support to Operational Hydrology and Water Management (H SAF) на основе измерений скаттерометра ASCAT КА серии METOP создали информационный продукт – относительную влажность почвы в слое до 2 х см (периодичность представления - 2-3 раза в сутки, разрешение 12.5 км). The EUMETSAT Satellite Application Facility on Land Surface Analysis (LSA SAF) на основе данных AVHRR КА серии МЕТОР создали информационный продукт - снежный покров (периодичность представления - 1 раз в сутки, разрешение 0.01°). Однако, продукт показывает хорошее распределение снега только на безлесных территориях. Support to Operational Hydrology and Water Management (H SAF) на основе измерений SSM/I и SSMIS КА серии DMSP создали информационный продукт - водный эквивалент снежного покрова (периодичность представления - 1 раз в сутки, разрешение 0.25°). Но продукт ограничен территориально следующими координатами (25-75° с.ш. и 25° з.д. - 45° в.д.). Для продукции EUMETCAST в спутниковом сегменте «ГИС Волга» были разработаны программы, автоматизирующие процесс получения исходной информации и конвертации данных из форматов BUFR/ HDR5/ GRIB2, настройки их мультимасштабного отображения, пополнения новой информацией базы данных и представления их в веб-сервисах.

Другая часть информационных продуктов была создана в ФГБУ НИЦ «Планета». Например, была реализована технология диагноза параметров облачного покрова, осадков и опасных явлений погоды для европейской территории России по данным радиометра SEVIRI с геостационарного метеоспутника Meteosat-11. В основе этой технологии лежат оригинальные методы автоматизированного порогового дешифрирования и классификации спутниковой информации по косвенным признакам, используются значений радиационной температуры и альбедо (в светлое время суток), прогностические поля метеопараметров, цифровая модель рельефа и др. Более подробное описание технологии приведено в статье [5]. В настоящей работе эта технология была доведена до представления в виде веб-сервиса в системе «ГИС Волга» (рис. 3).

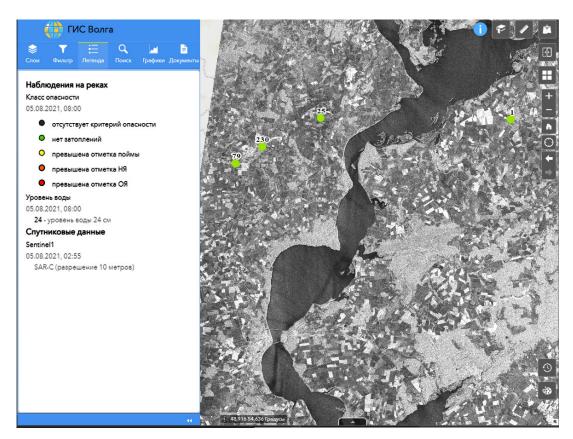


Рис. 2. Спутниковое изображение «Sentinel -1B» от 5.08.2021 г. (2:55 UTC) в системе «ГИС Волга»

Технология определения зон затоплений в бассейнах рек была разработана в Сибирском центре ФГБУ НИЦ «Планета», выполняется в собственном программном пакете «ЕССА–ЕХРО» [6]. Выделение границ зон затопления при наводнениях осуществляется с использованием данных среднего и высокого

пространственного разрешения с российских «Метеор-М» (КМСС), «Канопус-В» (МСС) и зарубежных КА «Sentinel -2» (MSI), «Landsat-8» (OLI). Технология реализуется путем двухэтапного метода выделения водных объектов и переувлажненных почв, основанного на использовании специального непараметрического алгоритма кластеризации и дерева решений, построенного с использованием средних значений спектральных характеристик кластеров красного и ИК каналов, индексов NDVI и NDWI. В настоящей работе эта технология была адаптирована к бассейну р. Волга, перенесена на ГИС сервер и доведена до представления в виде веб-сервиса в системе «ГИС Волга» (рис. 4.).

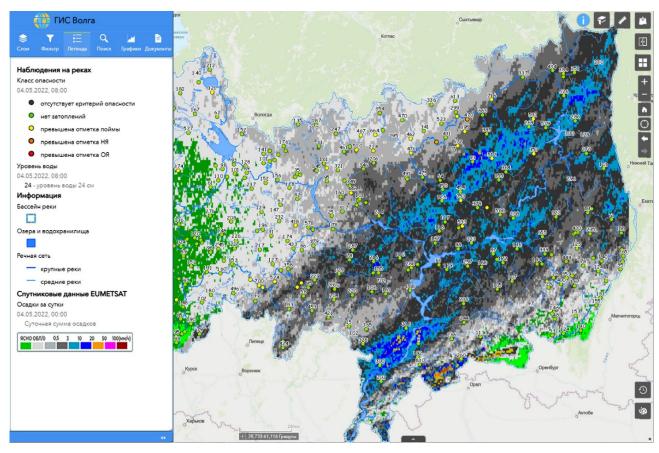


Рис 3. Суточная сумма осадков за 4.05.2022 г. в бассейне р. Волга.

Система «ГИС Волга» развернута в Гидрометцентре России на базе Главного вычислительного центра Росгидромета. Спутниковый сегмент системы «ГИС Волга» физически располагается в НИЦ «Планета» и присоединяется к основной системе на уровне подключения и регистрации веб-сервисов на геопортале Гидрометцентра России и их включения в веб-приложение с настройкой параметров отображения. При этом веб - приложение для работы со спутниковой информацией было существенно доработано. В списке слоев появились новые группы данных - спутниковые изображения и спутниковые информационные продукты. К этим слоям можно применить групповые операции. Например, применить фильтр и отобразить на экране электронной карты изображения со всех

КА за определенную дату, либо применить к ним инструмент «прозрачность». Можно также сопоставить данные за разные даты. Например, данные КА «Канопус В» выбрать за текущую дату и данные КА «Sentinel -1» за предыдущий день, а с применением инструмента «шторка» детально сравнить снимки между собой. На экране электронной карты пользователя также можно комплексировать данные с гидрологических постов, поступающие в систему от Гидрометцентра России, и спутниковые данные НИЦ «Планеты». Очень эффектно выглядит запущенный тайм-слайдер с различной периодичностью отображения данных (от 1 -5 дней до 1 - 12 часов), позволяя просмотреть изменяющуюся гидрологическую обстановку в виде анимации в ретроспективе. В описании легенды электронной карты теперь появляется полная информация о спутниковой системе (название КА, дата и время получения съемки, пространственное разрешение и др.), она также отображается при клике на снимки во всплывающем окне на экране электронной карты. Для быстрого поиска снимков по дате в фильтре был встроен календарь с помеченными датами, на которые имеется спутниковая съемка в вебсервисе.

Спутниковый сегмент системы «ГИС Волга» с целью повышения безопасности и надежности был развернут в отдельной корпоративной инфраструктуре сети НИЦ «Планета». Для обеспечения информационной безопасности на вебсервер был установлен веб-адаптер, разработана четырехуровневая система паролирования (на уровне базы данных, веб-сервисов, веб-приложения, геопортала) и создана сквозная аутентификация пользователей системы с помощью геопортальных технологий. Сквозная аутентификация позволяет пользователю входить в веб-приложение под своим паролем без необходимости вводить различные пароли от разных веб-сервисов, подключенных к этому веб-приложению, баз данных и т.д.

В заключении отметим, что использование ВЕБ- и ГИС- технологий позволяет существенно уменьшить объем выходной продукции за счет представления ее в виде веб-сервисов. Пользователю нет необходимости в перекачке больших объемов информации (объем одного спутникового снимка составляет 300-500 Мб.) в собственные системы, можно просто подключить и использовать в своей системе уже готовый веб-сервис. Система «ГИС Волга» позволяет эффективно объединить разнотипные наземные и спутниковые данные от разных подразделений Росгидромета (Гидрометцентра России и НИЦ «Планета») в виде веб-сервисов в единой среде, отображая полную картину гидрологической ситуации в бассейне реки Волга. При чем данные в системе отображены в виде электронных карт, графиков, таблиц, анимаций, документов (справки, бюллетени, отчеты), доступные как для визуализации, так и для скачивания непосредственно из вебинтерфейса пользователя. На сегодняшний день пользователями системы «ГИС Волга» являются Ситуационный центр Росгидромета, УГМСы Росгидромета, подразделения МЧС России, Рыбинская гидрометеорологическая обсерватория и др.

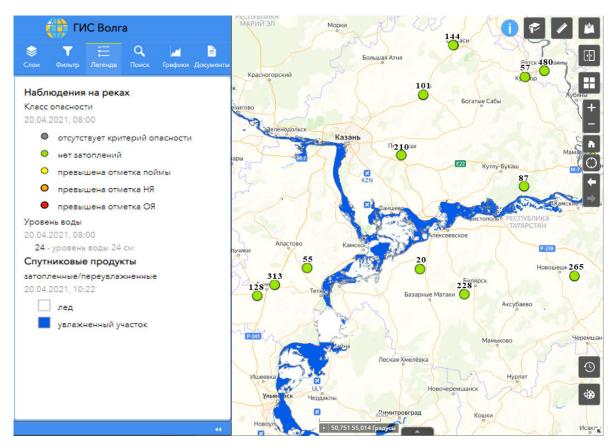


Рис. 4. Результаты интерпретации гидрологической ситуации по спутниковым данных «Метеор М №2-2» от 20.04.2021 (лед и водная поверхность), совмещенные с измерениями уровня воды на гидрологических постах

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Дерюгина В.В., Симонов Ю.А., Леонтьева Е.А., Невский А.А. ВЕБ- ГИС- технологии обработки и анализа спутниковых данных и гидрологических измерений и для мониторинга и прогнозирования паводковой обстановки в бассейне р. Волги // Материалы VI Международной научно-практической Конференции «Комплексные проблемы техносферной безопасности» 2021. Ч. 2. С. 80-92.
- 2. Borsch S.; Khristoforov A.; Krovotyntsev V.; Leontieva E.; Simonov Y.; Zatyagalova V. A Basin Approach to a Hydrological Service Delivery System in the Amur River Basin. Geosciences 2018, 8 (3), 93, p. 1-16, doi: 10.3390/geosciences8030093.
- 3. Sergei Borsch, Yuri Simonov, Andrei Khristoforov, Natalia Semenova, Valeria Koliy, Ekaterina Ryseva, Vladimir Krovotyntsev and Victoria Derugina. Russian Rivers Streamflow Forecasting Using Hydrograph Extrapolation Method // Hydrology 2022 ,9, 1. https://doi.org/10.3390/hydrology9010001
- 4. Асмус В.В., Загребаев В.А., Кровотынцев В.А., Милехин О.Е., Соловьев В.И., Успенский А.Б. Подсистема спутниковых наблюдений Росгидромета //Труды VI Всероссийского метеорологического съезда (г. Санкт-Петербург, 14-16 октября 2009 г.), 2011, г. Санкт-Петербург, с. 49-64.
- 5. Волкова Е.В., Кухарский А.В. Автоматизированная технология диагноза параметров облачного покрова, осадков и опасных явлений погоды для Европейской территории России по данным радиометра SEVIRI с геостационарных метеоспутников серии Meteosat MSG //Гидрометеорологические исследования и прогнозы. 2020. № 4 (378). С.43-62. doi 10.37162/2618-9631-2020-4-43-62.
- 6. Пестунов И.А., Рылов С.А., Бериков В.Б. Иерархические алгоритмы кластеризации для сегментации мультиспектральных изображений // Автометрия. 2015. Т. 51. № 4. С. 12-22.