Условия формирования и прогноз нефтегазоносности нижнетриасового нефтегазоносного комплекса Вилюйской гемисинеклизы

 $M. \ O. \ \Phi$ едорович $^{1,2}*$, $A. \ Ю. \ Космачева^{l}, \ И. \ A. \ Губин^{l}$

¹ Институт нефтегазовой геологии и геофизики им. А.А. Трофимука СО РАН, г. Новосибирск, Российская Федерация

² Новосибирский государственный университет, г. Новосибирск, Российская Федерация * e-mail: zahryaminamo@ipgg.sbras.ru

Аннотация. На территории Вилюйской гемисинеклизы наличие залежей углеводородов в нижнетриасовых отложениях определяется наличием и распространением песчаных пластов мелководно-морского генезиса — резервуаров для углеводородов, а также морских глинистых отложений — покрышек, способных удерживать углеводороды. На основе интерпретации материалов геофизических исследований сважин и сейсморазведки сделан прогноз распространения песчаных пластов нижнетриасовых отложений Вилюйской гемисинеклизы, содержащих газообразные углеводороды, а также глинистых пачек локального и регионального характера, служащих покрышками для каждого из продуктивных пластов.

Ключевые слова: Вилюйская гемисинеклиза, нижнетриасовый нефтегазоносный комплекс, газоносность, песчаные отложения, глинистые покрышки, тагаджинская свита, мономская свита

Conditions of Sedimentation and Forecast of Gas Content in the Lower Triassic Gas Complex of the Vilyui Hemisineclise

M. O. Fedorovich^{1, 2*}, A. Yu. Kosmacheva¹, I. A. Gubin¹

¹ Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, Novosibirsk, Russian Federation

² Novosibirsk State University, Novosibirsk, Russian Federation * e-mail: zahryaminamo@ipgg.sbras.ru

Abstract. On the territory of the Vilyui hemisyneclise, the presence of hydrocarbon deposits in the Lower Triassic deposits is determined by the presence and distribution of sandy seams of shallow-water genesis - reservoirs for hydrocarbons, as well as marine clay deposits - tires capable of retaining hydrocarbons. Based on the interpretation of the materials of geophysical studies of wells and seismic exploration, a forecast was made for the distribution of sandy layers of the Lower Triassic deposits of the Vilyui hemisineclise containing gaseous hydrocarbons, as well as clay packs of a local and regional nature, which serve as seals for each of the productive layers.

Keywords: Vilyui hemisineclise, Lower Triassic oil and gas complex, gas content, sand deposits, clay caps, Tagadzha suite, Monomsk suite

В пределах Лено-Вилюйского осадочного бассейна пробурено свыше 280 опорных, параметрических, поисковых и разведочных скважин. Площадь перспективных земель здесь около 250 тыс. км². Промышленная газоносность установлена в терригенных коллекторах пермского, триасового и нижнеюрского воз-

раста. При этом в нижнетриасовых залежах Средневилюйского и Среднетюнгского месторождений на глубинах 2400-2600 м (рис. 1) сконцентрировано более половины (56 %) разведанных запасов газа всех месторождений Вилюйской нефтегазоносной области [1, 2]. К настоящему времени извлечено всего около 15 млрд м³ газа.

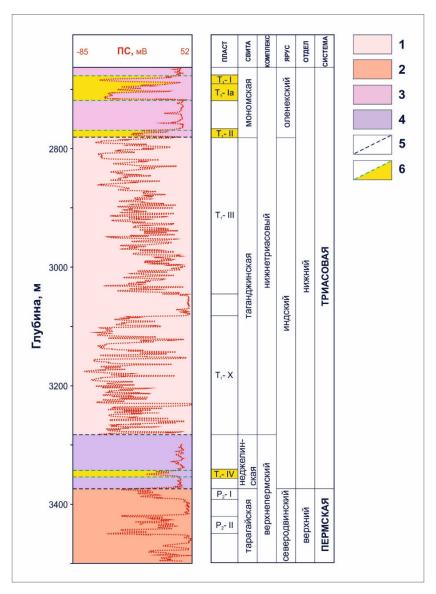


Рис. 1. Разрез отложений верхней перми и нижнего триаса (скв. Мастахская № 23).

Условные обозначения: 1 – таганджинский, 2 – тарагайский коллекторы; 3 – мономский, 4 – неджелинский флюидоупоры; 5 – границы литостратиграфических подразделений, 6 – песчаные пласты в глинистых флюидоупорах.

В отложениях нижнего триаса непромышленные притоки газа получены на ряде разведочных площадей, разбуренных в пределах Вилюйской НГО. Так, на Западно-Тюнгской площади в скв. 271 получен приток газа с дебитом 2.5 тыс. м³/сут. из песчаника в подошве мономской свиты.

Нижнетриасовый нефтегазоносный комплекс сложен таганджинским коллектором и мономским флюидоупором, который не только экранирует скопления УВ в нижерасположенных горизонтах, но и содержит залежи в расклинивающих данную глинистую толщу песчаниках [3, 4, 5].

По характеру площадного распространения в нихнетриасовых отложениях Вилюйской гемисинеклизы можно выделить два типа покрышек — региональную и локальную. К региональному типу относится глинистая толща оленекского яруса — мономская свита. Локальной является покрышка индского яруса продуктивного пласта T_1 -X тагаджинской свиты, которая развита на ограниченной части исследуемой территории. Литологическая неоднородность покрыше как региональных, так и локальных определяет их экранирующие свойства [6].

Несмотря на большое количество пробуренных глубоких скважин проблемными остаются детали геологического строения и фациальной изменчивости нижнетриасовых резервуаров, содержащих газ, и их перекрывающих глинистых покрышек.

Для изучения геологического строения нижнетриасового нефтегазоносного комплекса построены корреляционные схемы по линиям профилей. Далеко не все скважины, расположенные в пределах погруженнной центральной зоны Вилюйской гемисинеклизы, вскрывают полный разрез осадочного комплекса.

Литостратиграфическое расчленение разреза мезозойских отложений проводилось на основе интерпретации материалов геофизических исследований скважин по принципам классических методических приемов [7, 8, 9] с использованием дополнительной геолого-геофизической информации [по данным ИНГГ СО РАН, 10].

В тагаджинское время (поздний инд) на территории Вилюйской части морского бассейна на мелководье накапливались преимущественно песчаные отложения [11].

Нижнетриасовый НГК (таганджинский резервуар) занимает центральную часть НГП и на значительной площади характеризуется довольно высокими фильтрационно-емкостными свойствами. Сложен он породами таганджинской свиты, которая представлена плотными песчаниками (мощность отдельных пластов до 80 м), которые чередуются с пластами глинистых и алеврито-глинистых пород. Открытая пористость песчаников изменяется от 2 до 24 %, газопроницаемость не превышает 1×10^{-3} мкм². Наилучшие породы-коллекторы распространены в пределах Логлорского структурного мыса на Хоргочумской моноклинали (пласты T_1 –A, T_1 –Б и T_1 –B), а также в западной и центральной частях Хапчагайского мегавала (пласт T₁-III). Песчаники этого наиболее изученного продуктивного пласта представлены породами от мелко- и грубозернистых до гравелитовых разностей. Цементом в песчаниках является глинистый и карбонатный материал. Заметное ухудшение коллекторских свойств песчаников происходит на границе Вилюйской гемисинеклизы и Предверхоянского краевого прогиба, а также в Линденской впадине. В породах нижнетриасового НГК залежи выявлены на Средневилюйском, Толонском, Мастахском и Бадаранском месторождениях в пределах Хапчагайского мегавала, а также на Среднетюнгском и Андылахском месторождениях в пределах Логлорского структурного мыса на Хоргочумской моноклинали.

Внутри таганджинской свиты небольшие залежи газа (пласт T_1 -X) перекрыты локально распространяющейся пачкой глин, мощность которой изменяется от 0 до 40 м.

В мономское время (ранний оленек) на большей части Вилюйской гемисинеклизы происходило накопление морских преимущественно глинистых отложений. Но на южном борту и на Соболохской, Неджелинской и Бадаранской структурах в это время накапливались преимущественно песчаные и песчаноглинистые толщи, определяя южное напраление транспортировки терригенного материала.

Преимущественно глинистые отложения мономской свиты (до 225 м) являются флюидоупором нижнетриасового НГК. В ней фиксируется большое количество песчаных пластов-линз (20–30 м), в которых выявлены залежи на Средневилюйском (пласты-линзы T_1 –I, T_1 –Ia и T_1 –II), а также Толонском и Мастахском (пласт-линза T_1 –II) месторождениях в пределах Хапчагайского мегавала. Глины флюидоупора уплотненные. Среди глинистых минералов преобладают монтмориллонит и смешанослойные разности с большим содержанием разбухающих пакетов [12, 13].

В проницаемых породах скорость преобразования глинистых минералов значительно выше, чем в глинистых. На территории Вилюйской гемисинеклизы в глинистых толщах на глубине до 5 км сохраняется монтмориллонит, а в песчаных образованиях разбухающие минералы исчезают уже на глубине порядка 3,5 км [14, 15].

Наиболее высокие экранирующие свойства флюидоупора характерны для северо-западного борта гемисинеклизы.

В восточной и юго-восточной частях Хапчагайского мегавала мощность песчаников столь высока, что они занимают практически весь объем мономской свиты. Разделяющие их глинистые пропластки становятся менее 10 м и не способны удерживать углеводороды. В южной и юго-восточной частях бассейна фиксируется максимальная песчанистость мономской свиты, и флюидоупор утрачивает экранирующие свойства.

Таким образом, песчаные пласты T_1 –III и T_1 -X в отложениях таганджинской свиты распространены по всей территории исследования. Тогда как линзы песчаных пластов T_1 –I, T_1 –Ia и T_1 –II мономской свиты имеют локальное распространение.

Глинистые толщи – покрышки резервуаров – различаются по ряду признаков, влияющих на их изолирующие свойства. Это – характер их площадного распространения, степень литологической однородности и их мощность.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Трофимук А.А., Черский Н.В., Бредихин И.С., Васильев В.Г., Ворона И.Д., Горшенин Ю.Д., Косолапов А.И., Мокшанцев К.Б., Фрадкин Г.С. Нефтегазоносность территории Якутии и прогнозная карта оценка запасов углеводородов // Геологическое строение и нефтегазонос-

ность восточной части Сибирской платформы и прилегающих районов. – М.: Недра, 1968. – С. 222–245.

- 2. Горшенин Ю.Д. Филимонов И.А. Перспективы нефтегазоносности восточной части Вилюйской синеклизы и центральной части Предверхоянского прогиба на нефть и газ // Геологическое строение и нефтегазоносность восточной части Сибирской платформы и прилегающих районов. М.: Недра, 1968. С. 291—299.
- 3. Геология нефти и газа Сибирской платформы / Под ред. А.Э. Конторовича, В.С. Суркова, А.А. Трофимука. М.: Недра, 1981. 552 с.
- 4. Нефтегазоносные бассейны и регионы Сибири. Лено-Вилюйский бассейн / Под ред. А.Э. Конторовича, В.В. Гребенюка, Н.П. Запивалова, Л.Л. Кузнецова, Н.В. Мельникова, В.С. Старосельцева, В.С. Суркова, А.А. Трофимука, Г.С. Фрадкина, А.В. Хоменко, Г.Г Шемина. Новосибирск: СО РАН, 1994. 107 с.
- 5. Ситников В.С., Павлова К.А., Погодаев А.В., Черненко В.Б. О возможности совместного освоения запасов газа из традиционных коллекторов и плотных пород на месторождениях Хапчагайского нефтегазоносного района // Наука и образование. 2015. № 4. С. 18-23.
- 6. Сластенов Ю.Л. Классификационная характеристика глинистых покрышек Лено-Вилюйской НГО // Ученые записки ЯГУ. Серия: геология, география, биология. Якутск, 1994а. С. 75.
- 7. Дахнов В.Н. Электрические и магнитные методы исследования скважин. М.: Недра, 1981, -344 с.
- $8. \, \text{Serra O.}$ Fundamentals of well-log interpretation. The acquisition of logging data. Amsterdam: Elsevier, $1984. 424 \, \text{p.}$
- 9. Итенберг, С.С. Интерпретация результатов геофизических исследований скважин. М.: Недра, 1987. 375 с.
- 10. Граусман В.В. Стратиграфия верхнего докембрия и фанерозоя перспективных на нефть и газ территорий Западной Якутии / автореф. дис. канд. геол.-мин. наук. Новосибирск, 1994.-38 с.
- 11. Рукович А.В. История формирования газоносных толщ восточной части Вилюйской синеклизы и прилегающих районов Приверхоянского прогиба / автореф. дис. канд. геол.-мин. наук. Якутск, 2001.-32 с.
- 12. Гурова Т.И., Кузнецова В.Н., Рояк Р.С. Резервуары нефти и газа верхнепермских и мезозойских отложений Хатангско-Вилюйской нефтегазоносной провинции // Литология резервуаров нефти и газа в мезозойских и палеозойских отложениях Сибири. Новосибирск: СНИИГГиМС, 1982. С. 63-74.
- 13. Осипов В.И., Соколов В.Н., Еремеев В.В. Глинистые покрышки нефтяных и газовых месторождений. М.: Наука, 2001. 238 с.
- 14. Ивенсен В.Ю., Ивенсен Г.В. Глинистые минералы вулканогенно-осадочных отложений раннего триаса Лено-Вилюйской нефтегазоносной провинции. Якутск, 1975. 48 с.
- 15. Ивенсен, Г.В. Глинистые минералы пермо-триасовых отложений Лено-Вилюйской нефтегазоносной области / автореф. дис. канд. геол.-мин. наук. M, 1984. 25 c.

© М. О. Федорович, А. Ю. Космачева, И. А. Губин, 2022