DOI: 10.33764/2618-981X-2021-8-40-46

ГИБРИДНЫЙ 3D-ПРИНТЕР ДЛЯ ПОСЛОЙНОГО ФОРМИРОВАНИЯ СТРУКТУР С ПРОВОДЯЩЕЙ ТОПОЛОГИЕЙ

Виктор Павлович Бессмельцев

Институт автоматики и электрометрии СО РАН, 630090, Россия, г. Новосибирск, пр. Академика Коптюга, к. т. н., заведующий лабораторией, тел. +7 (383) 333-24-91, e-mail: bessmelt@iae.nsk.su

Николай Владимирович Голошевский

Институт автоматики и электрометрии СО РАН, 630090, Россия, г. Новосибирск, проспект Академика Коптюга, 1, младший научный сотрудник, тел +7 (383) 3332491, e-mail: nickolayg@iae.nsk.su

Денис Николаевич Катасонов

Институт автоматики и электрометрии СО РАН, 630090, Россия, г. Новосибирск, проспект Академика Коптюга, 1, научный сотрудник, тел +7 (383) 3332491, e-mail: katasonov@iae.nsk.su

В работе представлены основные характеристики и функциональные возможности созданного в ИАиЭ СО РАН гибридного 3D-принтера, содержащего портальную систему записи с диспенсерными головками для цифровой струйной печати и лазерную сканирующую систему для последующей постобработки с программными средствами точного совмещения. Зона построения находится на подвижной платформе, перемещающейся по Z координате. Такая конструкция позволяет путем послойного аддитивного синтеза формировать трехмерные структуры с заданной локальной проводимостью.

Ключевые слова: гибридный 3D-принтер, микродиспенсер, проводящие чернила

HYBRID 3D PRINTER FOR LAYER-BY-LAYER FORMATION OF STRUCTURES WITH CONDUCTIVE TOPOLOGY

Victor P. Bessmeltsev

Institute of Automation and Electrometry SB RAS, 1, Academik Koptyug Prospect, Novosibirsk, 630090, Russia, PhD, Head of Laboratory of laser graphics, phone: (383)333-24-91, e-mail: bessmelt @iae.nsk.su

Nikolay B. Goloshevsky

Institute of Automation and Electrometry SB RAS, 1, Academik Koptyug Prospect, Novosibirsk, 630090, Russia, Junior Researcher, phone: (383)333-24-91, e-mail: nickolayg@iae.nsk.su

Denis H. Katasonov

Institute of Automation and Electrometry SB RAS, 1, Academik Koptyug Prospect, Novosibirsk, 630090, Russia, PhD, Researcher, phone: (383)333-2-491, e-mail: katasonov@iae.nsk.su

The paper presents the main characteristics and functionality of a hybrid 3D-printer created at the Institute of Automation and Electrometry SB RAS, containing a portal recording system with dispenser heads for digital inkjet printing and a laser scanning system for subsequent post-processing with precise alignment software. The formation zone is located on a mobile platform moving along the Z coordinate. This design makes it possible, by layer-by-layer additive synthesis, to form three-dimensional structures with given local conductivity.

Keywords: hybrid 3D-printer, microdispenser, conductive ink

Введение

Разработка и создание аппаратных средств и технологий гибридного аддитивного синтеза трехмерных изделий создает условия для производства электронных приборов, изготовление которых традиционными методами имеет высокую стоимость или в принципе невозможно. Так, формирование трехмерных структур, содержащих проводящие и диэлектрические слои, позволяет создавать гибкие дисплеи и световые панели из органических светодиодов, интегрированные в изделия датчики температуры, давления, наличия и концентрации некоторых газов, элементы трехмерной функциональной микроэлектроники. Использование гетерогенных жидких и пастообразных композиций на основе графена и функциональных наночастиц металлов для изготовления проводящих чернил позволяет изготавливать гибкие печатные платы и кабели, электронные приборы на различных, в том числе нестандартных, подложках (бумаги, ткани, резины). Применение гибридных технологий дает возможность исключить фотолитографические операции, минимизировать процессы травления и, в ряде случаев, отказаться от использования вредных химических реактивов. С помощью таких технологий становится возможным значительно уменьшить количество деталей при изготовлении изделия, уменьшить габариты электронных и радиотехнических изделий, изготавливать «умную одежду» [1-7].

Одним из наиболее перспективных направлений гибридного синтеза является изготовление трехмерной структуры объекта, состоящей из проводников и функциональных элементов, методами цифровой струйной печати с последующим селективным лазерным отверждением (постобработкой).

Целью данной работы является разработка и создание экспериментальной системы для гибридного формирования объектов с программно-заданной трехмерной структурой.

Особенности технологии и основные компоненты системы гибридного 3D синтеза

Рассмотрим комплекс технических проблем, возникающих при использовании проводящих чернил для гибридного синтеза. Нанесение чернил методом струйной печати предполагает, что они всегда находятся в жидком состоянии, и их вязкость должна быть различна для разных элементов топологии при этом, согласована с конструкцией печатающей головки.

Процесс гибридного синтеза объекта с гетерогенной структурой должен включать следующие операции:

- подготовка чернил нужной вязкости и подложки;
- нанесение чернил в соответствии с программной САД-моделью;
- постобработка (термообработка);
- контроль электрических параметров и геометрии тестовых проводников на соответствие конструкторской документации.

Одним из основных компонентов гибридного принтера являются аппаратные средства микродозирования (или микродиспенсеры), которые различаются по принципу работы, конструкции и назначению [8, 9]. В работе [10] сравниваются по производительности генерации капель пьезоэлектрический и микроклапанный диспенсеры. По сравнению с пьезоэлектрической печатающей головкой микроклапанный дозатор является более прочным и надежным при выталкивании жидкости с вязкостью выше 60 сПз. Для такого же вязкого раствора диаметр капель, дозируемых микроклапанным диспенсером, очевидно, больше, чем у пьезоэлектрической печатающей головки. Размер капель из микроклапанного диспенсера значительно увеличивается с вязкостью. Поскольку для более вязкого раствора требуется большее усилие выталкивания, это приводит к более высокой амплитуде импульсов, требуемой для пьезоэлектрической печатающей головки, и более длительному времени открытия, требуемому для микроклапана. Благодаря различному механизму активации и индивидуальным характеристикам каждая печатающая головка имеет преимущества и ограничения по сравнению с другими в конкретных задачах изготовления. Для работы с различными по вязкости чернилами было решено разработать систему со сменными микродозаторами – пьезоэлектрическим для низковязких жидкостей при создании структур с высоким разрешением и поршневым дозирующим устройством для использования средне и высоковязких жидкостей при создании толстых структур с более низким разрешением.

Другим базовым компонентом гибридной технологии прототипирования и изготовления трехмерных изделий, позволяющим выполнять селективную термическую постобработку нанесенного слоя чернил, является метод лазерной безмасковой литографии [11, 12]. В качестве данного компонента применена сканирующая лазерная система с излучением инфракрасного диапазона.

Конструкция экспериментального устройства выполнена в виде портального механизма со сменной диспенсерной головкой на каретке портала. На каретке также расположена система технического зрения для совмещения обрабатываемого объекта и наносимой структуры и контроля сформированных структур. Для селективной лазерной модификации использован сканирующий модуль на основе гальванометрических дефлекторов с телецентрическим объективом, размещенный над полем формирования объекта.

Описание экспериментального гибридного 3D-принтера

На рис. 1 приведена функциональная схема разработанной системы

Основой системы является герметичная рабочая камера (1) построения изделия. В нижней части камеры расположен узел построения изделия (2), представляющий собой подвижную платформу с вертикальным перемещением. Внутри камеры построения расположен двухкоординатный портальный модуль позиционирования (3), на каретке которого установлены сменный диспенсерный узел (4), позволяющий установить пьезоэлектрический либо микроклапанный диспенсер, и модуль технического зрения (5).

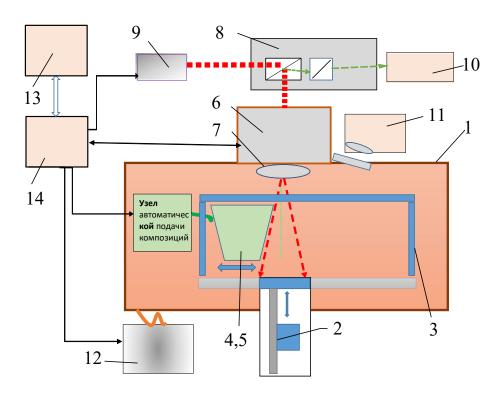


Рис. 1. Функциональная схема гибридного 3D-принтера

В качестве высокоразрешающей дозирующей системы используется пьезоэлектрический струйный диспенсер компании MicroFab [13,14] типа MJ-AL с техническими характеристиками, представленными в табл. 1.

 $\begin{tabular}{l} $\it Taблиџa 1$ \\ \begin{tabular}{l} Tехнические характеристики диспенсера MJ-AL \end{tabular}$

Стандартный диаметр отверстия	20-80 мкм, 5 мкм шаг
Отклонение диаметра отверстия	±1 мкм
Диапазон вязкости	< 20 cПз
Поверхностное натяжение жидкости	20-70 дин/см
Частота формирования капель	до 2000 Гц

Для печати более вязкими составами выбран микроклапанный диспенсер Liquidyn® P-Jet компании Nordson EFD (Германия) [18] с характеристиками, представленными в табл. 2.

На верхней стенке камеры установлена оптическая головка с узлом сканирования (6), фокусирующим объективом (7) и согласующими оптическими элементами (8). В качестве излучателя используется иттербиевый волоконный лазер (9) мощностью 20 Вт, оптический выход волоконного кабеля которого присоеди-

нен ко входу оптической головки. Также в верхней части камеры расположены термодатчик (9) и дополнительная обзорная видеокамера (10).

 $\begin{tabular}{ll} $\it Taблица~2$ \\ \begin{tabular}{ll} Tехнические характеристики диспенсера P-Jet \end{tabular}$

Максимальное давление жидкости	100 бар
Максимальная частота срабатывания	280 Гц
Давление воздуха управления	3-8 бар
Объем дозы	От 3 нанолитров за один цикл
Диапазон вязкости материала	0,5-10 000 мПа⋅с (тиксотропный)
Точность дозирования	> 97% (допуск по дозированию < 3%)

Блок подготовки и распределения газа (12) расположен внутри защитного кожуха системы и состоит из средств подачи буферного газа в зону обработки и его фильтрации в процессе работы.

На передней панели системы расположен пульт управления, предназначенный для подачи питания устройства и лазера, индикации режимов работы, индикации и регулировки давления буферного газа в камере построения. Задачи подготовки данных, запуска и остановки печати и селективной лазерной модификации, а также управления системой технического зрения возложены на управляющий компьютер (13). С компьютером соединен модуль электроники (14), который, в свою очередь, содержит контроллер системы, осуществляющий непосредственное управление всеми блоками системы.

Внешний вид системы показан на рисунке 2.

Рис. 2. Внешний вид гибридной диспенсерно- лазерной системы

Для задач синтеза 3D структур, содержащих проводящие и диэлектрические компоненты, разработано специальное программное обеспечение (СПО), которое позволяет осуществлять импорт исходных данных о формируемых объектах, их преобразование во внутренний формат представления, установку параметров формирования объектов и управление системой. Технические характеристики созданной системы приведены в табл.3.

Технические характеристики созданной системы

Максимальный размер изготавливаемого из-	110х110х120мм ³
делия	
Толщина формируемого слоя	10 - 100 мкм
Скорость перемещения головки диспенсе-	до 0,2 м/с
ров	
Размер сопла:	
– диспенсер 1	50 мкм
– диспенсер 2	50, 100, 250 мкм
Вязкость материала:	
диспенсер 1	20 сПз
– диспенсер 2	0,5-10000 мПа⋅с
Лазер 1060-нм	мощность 20 Вт, ТЕМ 00
Диаметр лазерного луча в плоскости записи	50 мкм
Дискретность лазерного луча в плоскости	5 мкм
записи	
Скорость движения лазерного луча макси-	1 м/с
мальная	

Экспериментальные результаты

С помощью созданной системы был выполнен ряд экспериментов по нанесенению с помощью микродиспенсера Liquidyn P-Jet и последующей селективной лазерной модификации композиций разработанных в ИХТТМС СО РАН на различные подложки. На рис. 3 представлены фрагменты тестовых образцов с нанесенной пастой содержащей медные частицы до (а) и после (б, в) лазерной модификации.

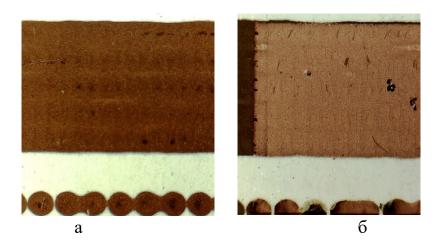


Рис. 3. Медная паста на диэлектрической подложке размер круглых медных точек 150 мкм

В результате экспериментов для некоторых композиций определен порог экспонирования, после которого в них появляется проводимость:

- серебряные чернила на полиимидной пленке 40 Дж/см²;

- серебряные чернила на картоне 25 Дж/см²
- медные чернила на картоне порог проводимости 40 Дж/см²;

Заключение

В результате работы созданы программно-аппаратные средства для гибридной печати 3D объектов. Проведен ряд экспериментов по нанесению жидких полимерных или пастообразных композиций на поверхности различных материалов с помощью микродиспенсеров и их селективной лазерной модификации.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Calvert P. Inkjet printing for materials and devices //Chemistry of materials. 2001. T. 13. №. 10. C. 3299-3305.
- 2. Coatanéa E. et al. Printed electronics, now and future //Bit Bang-Rays to the Future. 2009. C. 63-102.
- 3. Hon K. K. B., Li L., Hutchings I. M. Direct writing technology—Advances and developments //CIRP annals. 2008. T. 57. №. 2. C. 601-620.
- 4. Sekine C. et al. Recent progress of high performance polymer OLED and OPV materials for organic printed electronics //Science and Technology of Advanced Materials. -2014. -T. 15. $-N_{\odot}$ 3. -C. 034203.
- 5. Perelaer J., De Gans B. J., Schubert U. S. Ink-jet printing and microwave sintering of conductive silver tracks //Advanced materials. -2006. -T. 18. -N. 16. -C. 2101-2104.
- 6. Гольцова. М. Струйная печать в производстве электроники. Печатный монтаж, 2010, №2.
- 7. Корнилов Д. Ю. и др. Принтерные технологии в электронике. Материалы и устройства для печати-первый российский семинар (Москва, 15. 12. 2017) //Радиоэлектроника. Наносистемы. Информационные технологии. -2017.-T. 9. №. 2.
- 8. Gaugel T., Bechtel S., Neumann-Rodekirch J. Advanced micro-dispensing system for conductive adhesives //First International IEEE Conference on Polymers and Adhesives in Microelectronics and Photonics. Incorporating POLY, PEP & Adhesives in Electronics. Proceedings (Cat. No. 01TH8592). IEEE, 2001. C. 40-45.
- 9. Jianping L., Guiling D. Technology development and basic theory study of fluid dispensing-a review //Proceedings of the Sixth IEEE CPMT Conference on High Density Microsystem Design and Packaging and Component Failure Analysis (HDP'04). IEEE, 2004. C. 198-205.
- 10. Sun J. et al. Comparison of micro-dispensing performance between micro-valve and piezoelectric printhead //Microsystem technologies. 2009. T. 15. № 9. C. 1437-1448.
- 11. Плебанович В. Безмасковая литография требование сегодняшнего дня/ ЭЛЕКТРОНИКА: НАУКА, ТЕХНОЛОГИЯ, БИЗНЕС. 2015. №7 (00147). С.112-119.
- 12. В.М.Андреев, С.Г.Баев, В.П.Бессмельцев, Л.А.Павлюхина, Т.В.Чуприкова. Исследование процесса лазерного термохимического формирования металлических проводников на диэлектрических подложках. Автометрия, 1990, №3.
- 13.Jet_Operating_Manual.pdf?la=en&rev=f98833c2da8146b88ef7 ce551f388ebc (дата обращения: 24.08.2020).
- 14. MJ-AL-01 User's Manual, 2012. URL: http://www.microfab.com/images/pdfs/manuals/MJ-AL Manual.pdf (дата обращения: 21.08.2020).

© В. П. Бессмельцев, Н. В. Голошевский, Д. Н. Катасонов, 2021