DOI: 10.33764/2618-981X-2021-6-125-130

АВТОМАТИЗАЦИЯ КОНТРОЛЯ ОПТИЧЕСКИХ ПАРАМЕТРОВ ЭЛЕКТРОННО-ОПТИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЕЙ

Олег Александрович Квитовский

Сибирский государственный университет геосистем и технологий, 630108, Россия, г. Новосибирск, ул. Плахотного, 10, магистрант кафедры фотоники и приборостроения, тел. (999)464-57-81, e-mail: kvitovskij.O.A@yandex.ru

Дмитрий Михайлович Никулин

Сибирский государственный университет геосистем и технологий, 630108, Россия, г. Новосибирск, ул. Плахотного, 10, кандидат технических наук, доцент кафедры фотоники и приборостроения, тел. (923)240-44-45, e-mail: dimflint@mail.ru

В статье предложена схема установки с цифровой камерой для автоматизации измерения степени чистоты поля зрения и коэффициента неравномерности яркости экрана электронно-оптического преобразователя. Сформулированы требования к КМОП-матрице и объективу для используемой цифровой камеры.

Ключевые слова: электронно-оптический преобразователь, чистота поля зрения, коэффициент неравномерность яркости экрана

AUTOMATION OF CONTROL OF OPTICAL PARAMETERS OF IMAGE CONVERTER TUBES

Oleg A. Kvitovskiy

Siberian State University of Geosystems and Technologies, 10, Plakhotnogo St., Novosibirsk, 630108, Russia, Graduate, Department of Photonics and Device Engineering, phone: (999)464-57-81, e-mail: kvitovskij.O.A@yandex.ru

Dmitry M. Nikulin

Siberian State University of Geosystems and Technologies, 10, Plakhotnogo St., Novosibirsk, 630108, Russia, Ph. D., Associate Professor, Department of Photonics and Device Engineering, phone: (923)240-44-45, e-mail: dimflint@mail.ru

The article proposes a scheme of an installation with a digital camera for automating the measurement viewing area picture quality and the output brightness non-uniformity ratio of an image converter tubes. The requirements for the CMOS-matrix and the lens for the digital camera used are formulated.

Keywords: image converter tubes, viewing area picture quality, output brightness non-uniformity ratio

Введение

На текущий момент контроль электронно-оптических преобразователей (ЭОП) по-прежнему проводится в основном «ручными» методами из-за ряда технических и юридических проблем с автоматизацией контроля. Компьютеризиро-

ванные стенды для полуавтоматического контроля ЭОП находятся в постоянном совершенствовании [1].

При контроле оптических параметров ЭОП (таких как: степень чистоты поля зрения (СЧПЗ), коэффициент неравномерность яркости экрана (КНЯЭ) классическим «ручным» способом возникают проблемы с повторяемостью и точностью измерений. Например, невозможность вращать прибор в оправке измерительной установки, приводит к сложности с определением одних и тех же параметров или дефектов у разных операторов.

Внедрение компьютеризированных стендов для полуавтоматического или автоматического контроля ЭОП должны решить проблему повторяемости.

Сравнение схем измерения КНЯЭ и СЧПЗ ЭОП

Требования к проведению контроля параметров СЧПЗ и КНЯЭ ЭОП, представленные в ГОСТ 21815.16-86 «Метод измерения коэффициента неравномерности яркости экрана» и ГОСТ 21815.15-86 «Метод контроля степени чистоты пола зрения», ссылаются на один и тот же ГОСТ 21815.0-86 «Общие требования при измерении энергетических и оптических параметров». Функциональные схемы измерения данных параметров отличаются способом снятия показаний. Измерение параметров производятся оператором для СЧПЗ с помощью микроскопа (рис.1), а КНЯЭ яркомером (рис.2) [2-4].

Для оптимизации и автоматизации контроля измерений предлагается вместо микроскопа (рис. 1) и яркомера (рис. 2) использовать КМОП-матрицу с объективом или цифровую камеру.

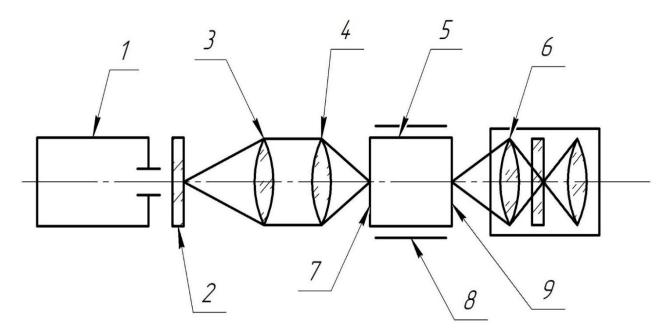


Рис. 1 Функциональная схема установки по контролю СЧПЗ ЭОП: 1 – осветитель; 2 – сетка; 3 – коллимационный объектив; 4 – проекционный объектив; 5 – ЭОП; 6 – микроскоп; 7 – фотокатод; 8 – держатель ЭОП; 9 – экран ЭОП

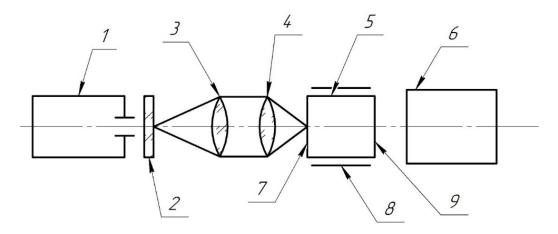


Рис. 2 Функциональная схема установки по контролю КНЯЭ ЭОП: 1 – осветитель; 2 – сетка; 3 – коллимационный объектив; 4 – проекционный объектив; 5 – ЭОП; 6 – яркомер; 7 – фотокатод; 8 – держатель ЭОП; 9 – экран ЭОП

При контроле СЧПЗ, заменив микроскоп на цифровую камеру достаточного разрешения, возможно в режиме реального времени оценивать размеры дефектов и их параметры по цифровому изображению экрана ЭОП. Использование специальных программ обработки изображения даст возможность производить измерения в автоматическом или полу автоматическом режиме. При замене яркомера на цифровую камеру можно оценить яркость различных частей экрана по яркости изображения, полученного с камеры. Функциональная схемы установки с цифровой камерой, которая обеспечивала бы контроль данных параметров представлена на рис. 3.

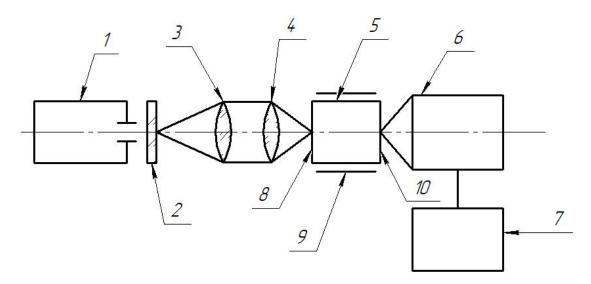


Рис. 3. Функциональная схема установки по контролю ЭОП с использованием цифровой камеры:

1 — осветитель; 2 — сетка; 3 — коллимационный объектив; 4 — проекционный объектив; 5 — ЭОП; 6 — цифровая камера; 7 — персональный компьютер; 8 — фотокатод; 9 — держатель ЭОП; 10 — экран ЭОП

Известны работы, в которых предложены способы определения данных параметров по фотографиям экрана ЭОП программными средствами Matlab [5, 6]. При проведении обработки изображений на компьютере можно исключить из установки сетку, разграничивающую рабочие зоны ЭОП, и накладывать границы рабочих зон ЭОП, поверх цифрового изображения.

Формирование требования к установке с цифровой камерой для измерения параметров ЭОП

Из анализа значений параметров, указанные производителями ЭОП 2+, таких как: «Катод», «PHOTONIS», «Экран оптические-системы» и «Экран ФЭП» [7-10], можно привести типовые оптические параметры контролируемых приборов, показанные в таблице.

Типовые оптические	парамет	ры ЭОП
--------------------	---------	--------

Параметр ЭОП	Значение
Диаметр экрана ЭОП	17,5 мм и 25 мм
Предел разрешения	71 шт/мм
Яркость экрана	От 2 до 14 кд/см ²
Размеры контролируемых дефектов	более 0,05 мм
КНЯЭ при освещении фотокатода источником света $2860K$	33 % (1:2 по методике расчета «PHOTONIS»)
КНЯЭ при освещении фотокатода источником света со λ = 850 нм	50 % (1:3 по методике расчета «PHOTONIS»)

С учетом требований, предъявляемых ГОСТ 21815.0-86, ГОСТ 21815.15-86 и ГОСТ 21815.16-86, элементы схемы установки для измерения на ней СЧПЗ и КНЯЭ ЭОП должны соответствовать определенным параметрам.

Осветитель должен обеспечивать равномерную освещенность всего рабочего поля фотокатода, чтобы неравномерность освещенности экрана была не более 5 %. Поскольку КНЯЭ нормируется при интегральной и спектральной освещенности фотокатода, то источника света для осветителя должно быть два: первый источник света с цветовой температурой $2860\ K\ (\Gamma OCT\ 7721-89)$ и второй источник света с длиной волны излучения $850\ hm$.

Для снятия оптических параметров ЭОП использование черно-белой (монохроматической) КМОП-матрицы, работающей в видимом диапазоне спектра, выглядит предпочтительнее цветной [11, 12]. Для корректной оценки размера дефектов цифровая камера (КМОП-матрица с объективом) должна обеспечивать на порядок более высокое разрешение чем размер контролируемых дефектов, т.е. на один разрешающий элемент цифровой камеры (пиксел) должно приходиться 0,005 мм изображения дефекта с экрана ЭОП. Необходи-

мое количество разрешаемых элементов (пикселов) на матрице для контролируемой поверхности рассчитывается по формуле (1):

$$N = \frac{d}{l},\tag{1}$$

где N – число разрешаемых элементов; d – размер контролируемой поверхности, l – размер изображения, укладывающегося на один разрешающий элемент (пиксел).

Для ЭОП с фотокатодом диаметром 17,5 мм матрица по меньшей стороне должна иметь минимум 3500 пикселей, а для фотокатода диаметром 25 мм – 5000 пикселей. Этим параметрам удовлетворяет несколько матриц фирмы «SONY», «Gpixel» и «ON Semiconductor» [13-15]. Наиболее оптимальным вариантом является квадратная 25 мегапиксельная матрица «GMAX0505» фирмы «Gpixel».

Камеры с сенсором «GMAX0505» находятся в свободной продаже с различными интерфейсами подключения к компьютеру, и имеется возможность приобретения не только за границей, но и через официальны дистрибьютеров в России [16-18].

Линейное увеличения проекционного объектива, работающего совместно с матрицей «GMAX0505», рассчитывается по формуле (2):

$$\beta = \frac{y'}{y},\tag{2}$$

где β – линейное увеличение; y'– длина стороны матрицы камеры; y– диаметр экрана $\Theta\Pi$.

Размер матрицы «GMAX0505» 12,8х12,8 мм. Линейное увеличение объектива, строящего изображение экрана ЭОП диаметром 17,5 мм на всю площадь матрицы, равно 0,73, одному пикселу соответствует 3,4 мкм экрана. Для ЭОП с диаметром экрана 25 мм: 0,51 и 4,9 мкм соответственно.

Заключение

Разрешающая способность современных монохромных КМОП-матриц обеспечивает возможность контроля оптических параметров ЭОП: СЧПЗ и КНЯЭ. На основе полученных результатов можно сформулировать требования к установке по контролю оптических параметров ЭОП:

- 1. Разрешение КМОП-матрицы не менее: 5000x5000 пиксел для ЭОП с диаметром экрана 25мм и 3500x3500 пиксел с экраном 17,5 мм.
- 2. Объектив для матрицы «GMAX0505» размером 12,8x12,8 мм, удовлетворяющей требованиям (1) и (2), должен иметь линейное увеличение 0,51 для ЭОП с диаметром экрана 25 мм и 0,73 для диаметра 17,5 мм соответственно.
- 3. Установка должна иметь два источника света: первый с цветовой температурой 2860~K и второй с длиной волны излучения $850~\mathrm{hm}$.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Krzysztof Chrzanowski. Computerized station for semi-automated testing image intensifier tubes. // Metrol. Meas. Syst. Vol. XXII (2015). No. 3. C. 371–382.
- $2.\ \Gamma$ ОСТ 21815.0- $86\ \Pi$ реобразователи электронно-оптические. Общие требования при измерении энергетических и оптических параметров: Государственные стандарт СССР Введ. 22.04.1991 Издательство стандартов, 1987. $19\ c.$
- 3. ГОСТ 21815.15-86 Преобразователи электронно-оптические. Метод контроля степени чистоты поля зрения [Текст]: Государственные стандарт СССР Введ. 01.01.1988 Издательство стандартов 1987. 3 с.
- 4. ГОСТ 21815.16-86 Преобразователи электронно-оптические. Метод измерения коэффициента неравномерности яркости экрана: Государственные стандарт СССР —Введ. 01.01.1988 Издательство стандартов, 1987. 3 с.
- 5. Д.М. Никулин, В.А. Райхерт, Д.В. Кочкарев. Влияние анализирующей диафрагмы на оценку неравномерности яркости экрана ЭОП // Приборы. 2020. № 12. С. 45–49.
- 6. Никулин Д.М., Райхерт В.А. Определение степени чистоты рабочего поля зрения электронно-оптического преобразователя // Вестник СГУГиТ. 2021. Т. 26. № 1. С.143–149.
- 7. Продукция «Экран ФЭП» [Электронный ресурс]. URL: http://ekranfep.ru/?page_id=756 Загл. с экрана (дата обращения: 12.04.2021).
- 8. XR-5 TM Technology Image Intensifier, 18 millimetre [Электронный ресурс] URL: https://lahouxoptics.ru/ files/editor/file/info/184-3089a1.pdf (дата обращения: 12.04.2021).
- 9. AO «Катод» каталог электронно-оптических преобразователей [Электронный ресурс]. URL: http://katodnv.com/ru/catalog/electronno-optical-converters/ (дата обращения: 12.04.2021).
- 10. АО «Экран-оптические системы» каталог электронно-оптических преобразователей 2+ поколения [Электронный ресурс]. URL: http://ekran-os.ru/ru/products?id=37#s (дата обращения: 12.04.2021).
- 11. Статьи и публикации ООО «ЭВС» [Электронный ресурс]. URL: https://www.evs.ru/publ 1.php?st=16 (дата обращения: 12.04.2021).
- 12. Камеры с современной КМОП-технологией приходят на замену ПЗС-камерам [Электронный ресурс]. URL: https://www.baslerweb.com/fp-1551857578/media/ru/downloads/documents/white_papers/BAS1505_White_Paper_Benefits_o f CMOS.pdf (дата обращения: 12.04.2021).
- 13. SONY CMOS Image Sensor for Industry [Электронный ресурс]. URL: https://www.sonysemicon.co.jp/e/products/IS/industry/product.html (дата обращения: 12.04.2021).
- 14. GMAX0505 фирмы Gpixel» [Электронный ресурс]. URL https://www.gpixel.com/products/area-scan-en/gmax0505-2-5-%CE%BCm-25-mp-global-shutter-image-sensor/ (дата обращения: 12.04.2021).
- 15. ON Semiconductor image sensor [Электронный ресурс]. URL: https://www.onsemi.com/products/sensors/image-sensors-processors/image-sensors#products=fjI1MDMxNjh+cmFuZ2V+Mn4xMC44fjUwLjF+ (дата обращения: 12.04.2021).
- 16. Камера машинного зрения DH-MV-A9B57MX250E [Электронный ресурс]. URL https://www.npk-photonica.ru/product/18676/ (дата обращения: 12.04.2021).
- 17. Камера машинного зрения DH-MV-A9B57MX250E [Электронный ресурс]. URL https://www.npk-photonica.ru/product/18633/ (дата обращения: 12.04.2021).
- 18. Scientific camera pco.panda 26 [Электронный ресурс]. URL https://www.pco.de/filead-min/user_upload/pco-product_sheets/pco.panda_26_data_sheet.pdf (дата обращения: 12.04.2021).

© О. А. Квитовский, Д. М. Никулин, 2021