МАСШТАБИРУЕМЫЕ МАСКИ ДЕТЕКТОРА УГЛОВЫХ ТОЧЕК НА ТРЕХМЕРНЫХ ИЗОБРАЖЕНИЯХ

Иван Гаврилович Казанцев

Институт вычислительной математики и математической геофизики СО РАН, 630090, Россия, г. Новосибирск, пр. Академика Лаврентьева, 6, доктор физико-математических наук, старший научный сотрудник, тел. (383)330-73-32, e-mail: kig@ooi.sscc.ru

Рассматриваются масштабируемые маски выделения углов на трехмерных изображениях, применяемые при обработке скользящим по изображению окном. В отличие от известных алгоритмов, матрицы маски больших размеров конструируются простым добавлением периферийных обрамляющих элементов к меньшим маскам, оставляя подматрицы неизменными.

Ключевые слова: обработка изображений, скользящее окно, детектор углов

SCALABLE MASKS FOR CORNER DETECTION IN THREE-DIMENSIONAL IMAGES

Ivan G. Kazantsev

Institute of Computational Mathematics and Mathematical Geophysics SB RAS, 6, Prospect Akademik Lavrentiev St., Novosibirsk, 630090, Russia, D. Sc., Senior Researcher, phone: (383)330-73-32, e-mail: kig@ooi.sscc.ru

We consider scalable masks of the detection of corners in the three-dimensional images used for processing by a sliding window on the image. Unlike well-known algorithms, the large-size matrices of masks are constructed by simply adding rows, columns and sides of smaller masks, leaving the submatrices unchanged.

Keywords: image processing, sliding window, corner detector

Введение

В работе рассматриваются новые маски выделения углов на двумерных и трехмерных массивах изображений для применения в традиционном методе скользящих фрагментов, или окон [1, 2]. Вершины угловых структур, или угловые точки, являются важной локальной особенностью изображения и принадлежат к классу так называемых доминантных, или характерных, точек. Они используются как опорные точки в работе со стереопарами, как признаки в распознавании лиц (например, уголки глаз), отпечатков пальцев и букв в текстах [3–5]. Важные приложения включают также калибровку камер, отслеживание движущихся объектов в робототехнике и машинном зрении, поиск особенностей на трехмерных массивах томографических изображений.

Разработанная ранее новая двумерная модель угла [6, 7] обладает пологими сторонами, в отличие от традиционного задания идеального угла с помощью об-

рывистых функций-ступенек. Значениям яркости изображения на границе предполагаемой угловой структуры придаются веса, промежуточные между весами области фона и собственно угла. В работе [8] обобщены результаты двумерного случая на дискретные телесные углы. Данная работа распространяет свойство делимости масштабируемых масок на матрицы меньшего размера того же класса на трехмерный случай.

Двумерные маски угловых структур

Известно множество дифференцирующих масок, или дискретных ядер двумерной свертки [1]. Среди подобных схем конструирования масок выделяется маска Кирша [2], моделирующая ориентированные границы при анализе текстур и угловых структур в видеоданных (рис. 1).

$$K^{1} = \begin{bmatrix} \mathbf{5} & \mathbf{5} & \mathbf{5} \\ -3 & \mathbf{0} & -3 \\ -3 & -3 & -3 \end{bmatrix}, \quad K^{2} = \begin{bmatrix} -3 & \mathbf{5} & \mathbf{5} \\ -3 & \mathbf{0} & \mathbf{5} \\ -3 & -3 & -3 \end{bmatrix}, \quad K^{3} = \begin{bmatrix} -3 & -3 & \mathbf{5} \\ -3 & \mathbf{0} & \mathbf{5} \\ -3 & -3 & \mathbf{5} \end{bmatrix}, \quad \dots, \quad K^{8}$$

Рис. 1. Маски Кирша размера 3х3 для углов в 90 градусов

Обобщение масок Кирша на размерности, большие 3, в каждом случае нового размера требуют пересчета элементов матрицы. Для генерации угловых дифференцирующих масштабируемых масок W_n размеров (2n-1)х(2n-1), мы вводим единообразную дискретную модель угла с явно определяемыми границами (элементы *a*) между телом угла (элементы *c*) и фоном (элементы *d*) (рис. 2).

	d	d	а	с	с		d	d	а	с	а		d	d	а	с	с
$W^{\pi/2} =$	d	d	а	с	с]	d	d	а	а	d	$, W^{3\pi/4} =$	d	d	а	с	с
	d	d	0	а	а	$, W^{\pi/4} =$	d	d	0	d	d		d	d	0	с	с
	d	d	d	d	d		d	d	d	d	d		d	d	d	а	с
	d	d	d	d	d		d	d	d	d	d		d	d	d	d	а

Рис. 2. Модели иерархических масок $W^{\pi/2}$, $W^{\pi/4}$ и $W^{3\pi/4}$ размера 5х5 для углов в 90, 45 и 135 градусов, соответственно

Обозначим $|A_n|$, $|C_n|$, $|D_n|$, и $|O_n| = 1$ количество элементов маски угла W_n со значениями a, c, d, u 0, соответственно. Число всех элементов матрицы W_n равно $|W_n| = (2n-1)^2$. Вычисление значений $|A_n|$, $|C_n|$, $|D_n|$ дает нам:

$$|A_n| = 2(n-1), |C_n| = (n-1)^2, |D_n| = (n-1)(3n-1).$$
 (1)

Дифференцирующее свойство маски записывается в виде

$$|A_n|a + |C_n|c + |D_n|d = 0.$$
 (2)

С учетом (1) условие (2) принимает вид

$$2a + (n-1)c + (3n-1)d = 0.$$
 (3)

Масштабируемость матриц выполняется для произвольных *m*:

$$2a + (m-1)c + (3m-1)d = 0.$$
 (4)

Решение системы уравнений (3) и (4) приводит к соотношению в терминах d

$$(a, c, d) = (-d, -3d, d) = -d (1, 3, -1).$$
(5)

Минимальные взаимно простые числа (a, c, d) = (1, 3, -1) выбраны в качестве элементов масштабируемой маски в 90 градусов. Выкладки, подобные уравнениям (3) - (5), дают маски для углов в 45 и 135 градусов [7], соответственно:

$$(a, c, d) = (3, 7, -1); (a, c, d) = (1, 5, -3).$$
(6)

На рис. 3 приводятся некоторые полученные таким способом маски.

Рис. 3. Масштабируемые маски углов в 90 (Q, S) и 45 (T, U) градусов

Рассматриваемые маски обладают свойством, которое назовем аддитивностью. Оно иллюстрируется на рис. 4.

Рис. 4. Сумма масок в 45 градусов дает удвоенную маску угла в 90 градусов

Это свойство распространяется (с точностью до коэффициента) и на другие сочетания угловых масок, например, маска в 135 градусов представляется сум-

мой масок 90 и 45 градусов. Аддитивность масок позволяет производить вычисления свертки с базовой маской в 45 градусов и ее поворотами, а затем комбинировать результаты для анализа углов, кратных 45°. Оказывается, такая полезная иерархия в виде декомпозиции масок в сумму масок меньшего размера возможна и для масштабируемых масок выделения угловых структур на трехмерных массивах изображений.

Трехмерные маски угловых структур

В трехмерном случае рассматриваются две модели угловых структур, описываемых массивом W_n размера (2n-1)x(2n-1)x(2n-1): пирамиды (рис. 5, *a*) и октанты (рис. 5, *б*). Вершина угла *O* с координатами (*n*, *n*, *n*) находится в центре массива.

Рис. 5. Два типа трехмерных углов, вершина *О* является центром массива: *a*) фигура *OKLMN* – пирамида; *б*) фигура *OABCDEF* – октант

В массиве возможны 6 различных ориентаций для пирамиды и 8 для октанта. Пирамида и октант занимают телесные углы $4\pi/6$ и $4\pi/8$, соответственно. Рассмотрим пирамидальный телесный угол. По аналогии с двумерным случаем, определим дискретную модель дифференцирующей маски, в которой: a - элементы четырех ребер пирамиды, b – элементы её четырех сторон за исключением ребер, c – элементы собственно угла и d – элементы фона. Обозначим $|A_n|$, $|B_n|$, $|C_n|$, $|D_n|$, и $|O_n| = 1$ количество элементов маски угла W_n со значениями a, b, c,d, и 0, соответственно. Число всех элементов матрицы W_n равно $|W_n| = (2n-1)^3$. Вычислим значения $|A_n|$, $|B_n|$ и $|C_n|$:

$$|A_n| = 4(n-1), |B_n| = 4(n-1)^2, |C_n| = (n-1)(2n-1)(2n-3)/3.$$
 (7)

Тогда

$$|D_n| = |W_n| - |A_n| - |B_n| - |C_n| - |O_n| = (n-1)(2n-1)(10n-1)/3.$$
(8)

Дифференцирующее свойство маски записывается в виде

$$|A_n|a + |B_n|b + |C_n|c + |D_n|d = 0.$$
(9)

Выписав дифференцирующие соотношения на граничные элементы пирамиды, и решая их систему совместно с (9), получаем минимальные взаимно простые элементы пирамидальной маски (рис. 6, 7):

$$(a, b, c, d) = (1, 2, 5, -1).$$
(10)

Рис. 7. Примеры массивов углов в форме пирамиды размером N^3 : слева: пирамида *OABCD*, N=3, d = -1; справа: пирамида *OKLMN*, N=5, показаны три слоя, пустые клетки соответствуют значениям d = -1

Трехмерные маски угловых структур, как и двумерные маски, обладают свойством аддитивности. Ввиду ограниченности объема статьи, по большей части используем геометрические иллюстрации. Декомпозиции пирамидальной маски *OKLMN* с квадратным основанием *KLMN* в сумму двух пирамид *OKLN* и *OLMN* с треугольными основаниями *KLN* и *LNM* геометрически иллюстрируется на рис. 8, 9.

3	5	5	5	1		-1	-1	-1	-1	1		1	2	2	2	1
5	11	11	5	-1		-1	$^{-1}$	-1	5	5		2	5	5	5	2
5	11	5	-1	-1	+	-1	-1	5	11	5	$= 2 \cdot$	2	5	5	5	2
5	5	-1	$^{-1}$	-1		-1	5	11	11	5		2	5	5	5	2
1	$^{-1}$	-1	$^{-1}$	-1		1	5	5	5	3		1	2	2	2	1

Рис. 8. Декомпозиция слоя *KLMN* массива 5³ в сумму двух матриц

3	5	1		-1	-1	1		1	2	1
5	5	$^{-1}$	+	-1	5	5	$= 2 \cdot$	2	5	2
1	-1	$^{-1}$		1	5	3		1	2	1

Рис. 9. Декомпозиция слоя *АВСD* массива 3³ в сумму двух матриц

Аналогичные результаты получены для угловых структур в форме октантов (рис. 10).

Рис. 10. Визуализация слоев маски угла в виде октанта с коэффициентами:

а) обозначения модели: a – значения элементов на ребре октанта, исключая вершину O, b – значения стороны октанта, исключая ребра, c – элементы тела угла; δ) сечения OCBA, OAFE и OEDC – стороны кубического угла OAFEDCB маски 7³; s) сечение GHIJ маски размера 7³

Минимальные взаимно простые элементы кубической маски (см. рис. 10) получены [8] аналогично процедуре для пирамидальной маски:

$$(a, b, c, d) = (1, 3, 7, -1).$$
(11)

Заключение

В статье представлены результаты обобщения двумерных масштабируемых масок, используемых для выделения угловых структур изображений методом свертки скользящим окном, на трехмерный случай. Рассмотрены два вида дискретных моделей телесных углов в форме пирамид и октантов. Приведены значения элементов массивов и кратко изложены принципы их вычисления. Трехмерные аналоги масок угловых структур обладают свойствами, присущими их двумерным прототипам. Частные примеры иллюстрируют возможность представления трехмерные масок в виде суммы меньших цифровых телесных углов, сохраняющих свойства масштабируемых дифференцирующих масок. Дальнейшие исследования планируются в области создания эффективных алгоритмов, использующих масштабируемые маски в обработке многомерных цифровых изображений.

Работа выполнена в рамках государственного задания ИВМиМГ СО РАН (проект 0251-2021-0003).

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Гонсалес Р., Вудс Р. Цифровая обработка изображений. – М.: Техносфера, 2006. – 1072 с.

2. Kirsch R. Computer determination of the constituent structure of biological images // Computers and Biomedical Research. – 1971. – Vol. 4. – P. 315–328.

3. Harris C., Stephens M. A combined corner and edge detector // In C. J. Taylor, editors, Proceedings of the Alvey Vision Conference, 1988. - P. 147-151.

4. Rosten E., Porte R., Drummond T. Faster and Better: A Machine Learning Approach to Corner Detection // IEEE Transactions on Pattern Analysis and Machine Intelligence. -2010. - Vol. 32 (1). - P. 105–119.

5. Козловский А. Н. Алгоритм распознавания простых объектов на разновременных аэрокосмических изображениях по их форме // Шестой Белорусский космический конгресс. – Минск, – 2014. – Т. 1. – С. 323–326.

6. Казанцев И. Г. Об одном детекторе угловых точек на изображениях // Тр. XIV Междунар. научного конгресса "ИНТЕРЭКСПО ГЕО-Сибирь-2018", Т.1, "Дистанционные методы зондирования Земли и фотограмметрии, мониторинг окружающей среды, геоэкология", Новосибирск, 23 апреля 2018. – С. 89–93.

7. Kazantsev I. G, Mukhametzhanova B. O., Iskakov K. T., Mirgalikyzy T. Detection of the Corner Structures in Images by Scalable Masks // Journal of Applied and Industrial Mathematics. – 2020. – Vol. 14. – P. 73–84.

8. Kazantsev I. G, Mukhametzhanova B. O., Iskakov K. T. Detection of the corner structures in 3D arrays using scalable masks // Siberian Electronic Mathematical Reports. – 2021. – Vol. 18. – P. 61–71.

© И. Г. Казанцев, 2021