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Onenka paccTosHUS 0 OnmKaiiiiel TpaHuIlbl T1acTa BO BpeMs OypeHus yIpoIaeT MPOBOIKY
HAKJIOHHO-HANpPaBJICHHBIX CKBAXKUH. /{7151 OIIEHKH 3TOr0 pacCTOsIHUS MpeAaraeTcs moaxoa NoTo4ey-
HOW MHBEPCUM JAHHBIX MHAYKIIMOHHOIO KapOTa)ka Ha OCHOBE JIBYXCIONHON F€03JIEKTPUUECKON MO-
JIeNIv TUTacTa C UCMOJIb30BaHNEM HEHPOHHBIX ceTel. [lapameTprl Mosienu onpeaensitoTcs ¢ TOMOIBIO
KackaJia HeHPOHHBIX ceTel 1Mo Habopy n3MepeHuit nmpuodopa. [lepBas ceTh BRIUHUCIACT YIACIBHOE CO-
MIPOTUBIICHHUE CJI0s, COAEpKAILEro TOUKY 3anucu npudopa. [locnenyrommue ceTy MPUHUMAIOT B Kaye-
CTBE BXOJHBIX JIaHHBIX HaOOp M3MepeHuil mpubopa U mapaMeTpbl MOAEIH, OMPEeNICHHBIE C TOMO-
B0 MIPEABIAYINX ceTei. Bee cetn o0yuaroTcss Ha OTHOM M TOM K€ CHHTETHYECKOW 0a3e JaHHBIX.
baza naHHBIX COCTOUT U3 MHOXKECTBA I1ap, COJIEPKALIUX BEKTOP [apaMeTPOB MOJEIU U BEKTOP COOT-
BETCTBYIOIINX 3alllyMJICHHBIX U3MEpEeHU pudopa. Pe3ynpTaThl peiaraeMoro noaxoaa 03Ky K
pe3ysbTaraM O0IIEero aaropuTMa MHBEPCUHU, OCHOBAHHOTO Ha METOJIe Haubosee BeposSTHOW KOMOU-
HaIUU MapameTpoB. B To ke Bpems npeanaraeMblii moaxo1 padboTaeT Ha HECKOIBKO MOPSAKOB OBICT-
pee.

KaroueBble cjioBa: HeﬁpOHHLIe CCTH, HEJIMHEHHAs alllIpOKCUMalys, HHBCPCUS JaHHbIX WH-
AYKIOOUOHHOI'O KapoOTazKa, HBYXCHOfIHaH T'CORJICKTPUYICCKAasA MOJCJIb IIaCTa, PaCCTOAHUC A0 I'PAaHHUIIbI
jIacra
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Accurate real-time estimation of a distance to the nearest bed boundary simplifies the steering
of directional wells. For estimation of that distance, we propose an approach of pointwise inversion
of resistivity data using neural networks based on two-layer resistivity formation model. The model
parameters are determined from the tool responses using a cascade of neural networks. The first net-
work calculates the resistivity of the layer containing the tool measure point. The subsequent networks
take as input the tool responses and the model parameters determined with the previous networks. All
networks are trained on the same synthetic database. The samples of that database consist of the pairs
of model parameters and corresponding noisy tool responses. The results of the proposed approach
are close to the results of the general inversion algorithm based on the method of the most-probable
parameter combination. At the same time, the performance of the proposed inversion is several orders
faster.

Keywords: neural networks, nonlinear approximation, inversion of resistivity data, two-layer
resistivity model, distance to bed boundary

Introduction. Detecting and imaging of bed boundaries is one of the main chal-
lenges of reservoir navigation. Propagation resistivity tools provide early detection ca-
pabilities and sufficient depth of investigation for proactive geosteering decisions. Fast
and accurate calculation of distances to bed boundaries in real time helps quickly esti-
mate the position of the tool relative to the target zone and make wellpath adjustments.

Azimuthal propagation resistivity tool, in addition to coaxial coils, has a transmit-
ter-receiver pair where the transmitter is aligned with the axis of the drill collar and the
receiver is perpendicular to it. This arrangement has sensitivity both to resistivity con-
trast and direction of a bed boundary. Distance to the nearest bed boundary can be
directly estimated using three to four tool responses including the azimuthal measure-
ment in the way that is described in the paper [1]. Traditional processing based on
multi-parametric user-guided inversion with gradient convergence algorithm [2] per-
forms rigorous scanning of the parameter space to match the modeled and the measured
data but takes more time.

Recently, artificial neural networks (ANN) and machine learning have been in-
creasingly used to solve various computational geophysics problems. In particular, ap-
proximation of resistivity tool responses by neural networks for 1D multi-layer and 2D
models are described in the works [3-5]. In several publications, ANNs are applied
directly for inversion of resistivity measurements [6]. However, the authors note that
the inverted models are often inaccurate compared to the reference model.

We propose an ANN-based approach to estimate the parameters of two-layer re-
sistivity model of the environment from the resistivity tool responses. The set of neural
networks trained to estimate the parameters uses the responses of the tool as input.
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Neural networks are applied sequentially taking into account the previous estimated
parameters of the model and forming a cascade ANN block. Such a scheme makes it
possible to increase the accuracy of inversion and reduce the equivalence of the model
parameters.

Tool Description. To test the proposed approach, we perform an inversion of
deep azimuthal propagation (DAR) tool responses [7]. The tool has six coaxial coils
T1 - T4, R1 and R2 and two coils R3 and R4 transverse to the tool’s axis. Here T1 —
T4 are transmitters and R1 — R4 are receivers. We have selected a typical six-measure-
ments subset used in practice for inversion. The subset includes four bulk and two az-
imuthal measurements. The bulk measurements are attenuation (al400, al2m) and
phase difference (pl400, pl2m) measured at 400 kHz and 2 MHz. The azimuthal meas-
urements (imvc400, imvc2m) are compensated imaginary parts of induced voltage
measured at 400 kHz and 2 MHz.

Model description. A two-layer model of the medium is described by the layer
resistivities p;, p,, the coordinate Z of the bed between the layers relative to the tool
measure point (MP) and the tool dip angle 8 (see Figure 1). The ranges of the specified
parameters are 0.1-1000 Ohm-m for p; and p,, 0.2-5 m for Z, and 60-120 deg for 6.
The tool MP can be located in any of two layers. The pointwise inversion allows de-
termining all of the listed parameters with the exception of the dip angle.
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Fig. 1. Two-layer model of the medium with the tool.

Neural networks training. The synthetic database for ANNSs training contains
several hundred thousand samples. Each sample includes a randomly generated vector
of model parameters and the corresponding vector of tool responses. To ensure suc-
cessful ANN training and make the approach applicable to the real field data, the data-
base has to be preprocessed. We add noise to the vectors of tool responses and also
mark model vectors that appear to represent homogeneous models that are particular
case of two-layer model. The database formed in this way is used to train a set of feed-
forward ANN-based classifiers and approximators applied in inversion. The method-
ology of training feedforward artificial neural networks is described in [8-9].
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Cascade ANN inversion block. The proposed approach is based on the cascade
ANN inversion block described below. In the environment model used by this block,
the tool MP can only be in the upper layer. The block contains three pre-trained neural
networks used as approximators. The first network converts the tool responses into the
conductivity of the first layer. Further, the obtained conductivity o; is added to the first
ANN input and the resulting extended vector of parameters is converted by the second
network into the distance to bed Z. In the same way, the output of the second network
Is added to its input and the resulting vector of parameters is converted by the third
network into the conductivity of the second layer o, (see Figure 2). If the tool responses
are measured in a layered medium with more than two layers, the block outputs the
parameters of an equivalent two-layer model. In the case when the responses are re-
ceived in a homogeneous medium, the conductivity of the medium o; defined using
the first ANN of the cascade inversion block. At the end, the obtained conductivities
are recalculated into the resistivity of the layers and together with the distance to the
boundary Z go to the block output.
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Fig. 2. Flowchart of the cascade ANN inversion block.

Classifier-based inversion. As mentioned above, the cascade inversion block
works correctly in a layered medium represented by an equivalent two-layer model
with the tool MP located in the first layer. To be applied in real-world conditions, the
cascade block should be built into an extended inversion algorithm, which involves the
passage of the tool through a homogeneous medium and both layers of a two-layer
medium. Below is a description of such extended inversion algorithm in which, in ad-
dition to the cascade block, we use two classifier networks. The first classifier indicates
whether the tool responses are obtained in a homogeneous medium or in a layered one.
The second indicates the index of the layer in which the tool is located in the equivalent
two-layer model. We call this approach as classifier-based and the detailed flowchart
Is shown in Figure 3.
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Fig. 3. Flowchart of the classifier-based inversion.

The inversion of the tool responses at each particular point of the log is carried
out in several steps:

1. The tool responses go to the input of the classifier, which determines
whether the tool is in a homogeneous or layered medium.

2. If the tool is in a homogeneous medium, its conductivity is calculated us-
ing the first network from the cascade inversion block and the inversion ends there.

3. If the tool is in a layered medium, the responses go to the input of the
second classifier, which determines in which layer of the equivalent two-layer model
the tool is located.

4. If the tool is in the second layer, then the responses are pre-converted to
the equivalent position of the tool in the first layer using the symmetry of the model.

Then the responses pass to the input of the cascade inversion block and are con-
verted into environmental parameters.

Results. To compare the results of the described ANN inversion with general in-
version [Sviridov et al., 2014], a realistic synthetic model was built. Figure 4 shows
the case containing the reservoir with a layered structure in which layers of low resis-
tivity alternate with layers of high resistivity, wellpath and corresponding noisy DAR
responses.
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Fig. 4. Synthetic model consisting of seven layers with thicknesses smoothly
varying along the well path (red line) at the first track from the top, measured depth
in feet on the second track, dimensionless azimuthal measurements of DAR on the
third track, and apparent resistivity based on axial measurements of DAR on the
fourth track.

We apply three approaches of point-by-point inversion using a two-layer resistiv-
ity formation model. The first is the proposed ANN inversion, the second is the general
inversion, and the third is the combination of the first and second. In the last case of
the combined inversion ANN inversion result is passed as an expected model and initial
guess of the general inversion, and the final model at each point is improved with the
single gradient descent. Figure 5 shows the results of three approaches with misfit in-
dicators. Misfit is defined as the root mean square difference between the reference
responses and the responses in the inverted model.
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Fig. 5. The results of three approaches separated by blank lines. The ANN
inversion results are at the top, the general inversion — at the center, the combined
inversion — at the bottom. Each picture is accompanied by the misfit track at the
top and the measured depth track at the bottom. Thin solid lines on the inversion
results show the boundaries of the reference model, and dashed lines indicate
homogenous models.

All three inversion results show similar pictures with the distances to the nearest
boundaries that practically coincide with the reference reservoir model (black lines).
In practice, the presented results would make it possible to understand the structure of
the reservoir near the trajectory and help in geosteering well path adjustments. How-
ever, at some intervals with high misfit value an inversion with three layers is prefera-
ble (for example, 10000-10160, around 10275, around 10625, around 10770, and
around 11000).

The ANN inversion has a slightly larger misfit at most points and identifies the
homogeneous environment at a greater number of intervals. The combined inversion
improves data match of the ANN inversion to the values compared with that of the
general inversion results (see misfit tracks) except for the intervals identified as the
homogeneous model. Typical computational times of the presented results are about of
1 millisecond per point for the ANN inversion, 1 second for the general inversion, and
20 milliseconds for the combined inversion.
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Conclusions. We proposed a new ANN-based approach for resistivity data inver-
sion. The approach is developed for two-layer resistivity formation model and tested
on the synthetic example. The results of ANN inversion are close to the ones given by
the general inversion algorithm. At the same time, the ANN-based approach is several
orders faster. ANN inversion result can be used as a good initial model for a general
gradient-based inversion algorithm for its acceleration. The proposed approach as-
sumes processing of tool responses only, and no user input is required.
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