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HectpyxkTypHble TOBYIIKU 1 Kpasi pe3epByapa XapaKTepU3yIOTCsl YTIIOBBIMH HECOOTBETCTBHSIMU. YT-
JIOBOE HECOTJIache MEX/Ty HAKJIOHHO 3aJIEraroliM IIaCTOM U CyOrOpHU30HTAIBLHBIM BOJIOHE(PTSHBIM KOH-
TaKTOM PacIpOCTpaHeHO Ha MecTopoxaeHusax CeBepHoro Mopsi. B Hacrosieit pabote npeacraBiieH MOA-
XOJ1 K ’HBEPCHH JIAHHBIX MHIYKIIMOHHOTO KapOTaka B PeXKUME PEAIbHOTO BpEMEHH JUTs CLICHApHsI C YIJI0-
BbIM HecooTBeTcTBHEM. [1oxo/ McHonp3yer UCKyCcCTBEHHbIE HEMPOHHBIE CETH JUIs pacyeTa CUIHAJIOB
B IIAPAMETPUYECKHX 337aBaMbIX MOBEPXHOCTSIMH 2D reosnekTpuyeckux Moensx. PaccmarpuBaercs na-
pamMeTpHrueckas MoZIeNb C AByMs HeMapawieIbHbIMU I'PaHULIAMH, TTOIXOSIIAs VI CHEHAPUEB C YTITIOBBIM
HECOOTBETCTBUEM M BHIKIIMHUBaeM. OOyueHne HEHPOHHBIX CETEeH JUIs TOM IapaMeTpUIeCKOM MOJIEIN BbI-
TIOJIHSETCS. HAa OCHOBE 0a3bl TAHHBIX, COJEPIKAIICH SK3EMILISIPBI € TapaMeTpaMy MOJIETI U COOTBETCTBYIO-
IIMMU UM curHanamu. HelipoHHbIe ceTH SBIsoTCs aapoM 2D HHBEpCUH, OCHOBAHHOW Ha ONTUMU3AIMOH-
HoM Metoje JleBenOepra-MapkBapara. UToObl poJEMOHCTPUPOBATH MPUMEHUMOCTh TIOAX0/a U CpaB-
HUTH ¢ pesynsratamu 1D unBepcun, B cunTeTryeckor 2D Mozienu aHamM3upyroTCsl CUTHAIIBI IPHUOOPOB
nanbHero u OmmwkHero neiictust. [lokasano, yro 1D unBepcus onpenenser 100 MO3UIHIO BOAOHEDTS-
HOTO KOHTaKTa, JIN0OO CTPYKTYpy HAKJIOHHBIX clIoeB. B Toxe Bpems 2D uuBepcus 1aeT BO3MOKHOCTB KO-
PEKTHO BOCCTAHOBUTH PaCIIONIOKEHHE HelapauienbHbIX rpaHull. [IpousBoaurensHOCTh 2D nHBEpCHH, Oc-
HOBAHHOW Ha HEUPOHHBIX CETSIX, IO3BOJISIET IPUMEHSATH €€ B PEKHME PEATTBHOTO BPEMEHH.

KiroueBble c10Ba: MHIYKIMOHHBIM 3JIEKTPOMAarHUTHBIA KapoTax, HelpoHHble ceTH, 2D reo-
AIEKTPUYECKUE MOJEIH, YTII0BOE HECOTJIACUE, HEUPOHHBIE CETH, HHTEPIIPETALUs JAHHBIX
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Non-structural traps and reservoir flanks are characterized by angular unconformities. Angular
unconformity between dipping formation and sub-horizontal oil-water contact is common in the
North Sea fields. This paper presents an approach to real-time inversion of LWD resistivity data for
the scenario with angular unconformity. The approach utilizes artificial neural networks (ANNSs) for
calculating the tool responses in parametric surface-based 2D resistivity models. We propose
a parametric model with two non-parallel boundaries suitable for scenarios with angular unconform-
ity and pinch-out. Training of ANNs for this parametric model is performed using
a database containing samples with the model parameters and corresponding tool responses. ANNSs
are the kernel of 2D inversion based on the Levenberg-Marquardt optimization method. To demon-
strate applicability of our approach and compare with the results of 1D inversion, we analyze Extra
Deep Azimuthal Resistivity tool responses in a 2D synthetic model. It is shown that 1D inversion
determines either the position of the oil-water contact or dipping layers structure. At the same time,
2D inversion makes it possible to correctly reconstruct the positions of non-parallel boundaries. Per-
formance of 2D inversion based on ANNS is suitable for real-time applications.

Keywords: resistivity logging, neural networks, 2D resistivity model, angular unconformity,
pinch-out, data interpretation

Introduction

The number of wells planned in the reservoir flanks, in the water-oil zone, is in-
creasing. In these cases, there may be an angular unconformity between reservoir top
and bottom or the reservoir top and fluid contact. Such geological features cause high
uncertainty in geological modeling, depending on the available geological data and the
depth of their analysis. Inversion of electromagnetic logging data helps to reduce geo-
logical uncertainties and make the optimal decision on well placement while drilling.

Usually, the scenarios typical for a particular field are known from the structural
maps and offset wells. In addition to the above-mentioned cases of angular unconform-
ity and pinch-out, sub-vertical faults and formation faults may occur. Each of these
special cases can be described by a specific subclass of parametric 2D models. The use
of 2D models for describing the resistivity distribution in the medium is more appro-
priate. At the same time, the calculation of the tool responses in such model is time-
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consuming. All known methods for solving Maxwell's equations (integral equations
[1, 2], finite difference method [3], volume integral equations [4], etc.) have close per-
formance. Calculation of all tool responses for a 10 m trajectory interval by any of
these methods takes a few minutes on a desktop computer. For comparison, in the case
of a 1D layered model, this takes about 1 ms.

In this paper, as in earlier works [5, 6], we approach the problem of acceleration
of the 2D solver based on data science methods. The approach consists of choosing a
parameterization of the geologic formation, preparing a database consisting of pairs of
model parameters and tool responses, training ANNs and using these ANNs for fast
calculation of tool responses for a particular model. Database is generated using rigor-
ous solver [1, 2]. Acceleration of database generation and training of neural networks
Is done on CPU and GPU clusters. High performance of ANN solver is achieved by
parallelizing computations based on OpenMP and MKL libraries.

In the first work in described direction [5], a method for accelerating the 2D
solver using neural network approximation was presented. A fault model with nine
parameters was taken with the strike axis perpendicular to the curtain section with some
additional restrictions. The volume of the database providing sufficient accuracy was
about 10* samples. The speed of the obtained neural network solver is of 1 ps order
that exceeds the speed of the solver for the 1D layered model. In [6], the same approach
was applied to a three-layer model with a wall, where the orientation of the strike axis
is arbitrary. The volume of the database had increased to 10° samples.

In this paper, we continue to develop our approach for another subclass of 2D
models that describes angular unconformity. Here, as in [6], the strike axis can be ori-
ented arbitrarily with respect to the well trajectory. The angular unconformity model
has less parameters than the model in [6], but their ranges are wider; therefore, the sizes
of databases are approximately the same (about 108 samples).

FPS: 2 FPS: 1 FPS: 1

Fig. 1. The 2D model with three layers and two nonparallel boundaries used
for inversion. Three different orientations of the strike axis are shown
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Table 1
Parameters of the 2D model and their ranges

Parameter Ranges Units
Boundary dips 61, 8 0:360 degree
Distances d1,d> —45 :45 meter
Resistivities p;, p,, p3 0.6:2000 Ohm - m
Roll ¢, azimuth ¢ 0:360 degree

Resistivity model

We consider the 2D parametric model with two non-parallel boundaries suitable
for scenarios with angular unconformity and pinch-out (Fig. 1). The model is defined
in the model plane and has the strike axis. The position of boundaries are determined
by the (signed) distance to the origin and the dip angle. For database generation used
for ANN training, the tool is located at the origin and may rotate around its axis by the
roll angle y and by the azimuthal angle ¢. The seven parameters of the 2D model plus
two angles responsible for orientation of the tool constitute the nine parameters of the
problem (see Table 1). The parameter units given in Table 1 are used throughout the
paper.

Tools. We perform simulation for tools providing multiple and azimuthal propa-
gation resistivity (MPR & APR) and extra deep bulk and azimuthal resistivity (EDAR)
measurements [7, 8]. The tools are schematically presented in Fig. 2.

T, T4 Ry R, Ry Ry T T,

A Y Y T Y W T T, Ry R,
a) — N —
b)

Fig. 2. Layout of tools: a) MPR & APR, b) EDAR

ANN solver. The approximation of the tool responses is built using feedforward
networks with several hidden layers. Each hidden layer contains several tens of neu-
rons. We use a separate ANN to approximate the individual tool response. The input
network layer is formed by nine model parameters. All parameters, except the resistiv-
ities, go to the input unchanged. The latter, in turn, are preliminarily converted into real
parts of the wavenumber corresponding to the operation frequency of the response. The
output of ANN is the final tool response.

The databases required for training are generated with distributed computations
using the in-house solver described in [1, 2]. Separate databases with several hundred
thousands of samples are built for the azimuthal and co-axial tool responses at each
frequency. By a sample we mean a vector of the model parameters and the correspond-
ing vector of co-axial or azimuthal tool responses. The vectors of the parameters of the
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model are generated randomly according to predetermined distributions that take into
account the peculiarities of the problem. Network training was conducted by using the
Levenberg-Marquardt optimization algorithm implemented in in-house Python-based
library.

Inversion Algorithm. In 2D inversion, we search for the model parameters that
minimize the difference between the synthetic and measured signals. Generally speak-
ing, we search for the minimum of the objective function

Slm meas

fp) = zzls S +a§:|pj—pfx“
j=1

m=1i=

In the expression above p = (py, ..., py) are the model parameters, ss”” and

s are the i™ synthetic and measured signals at the m™™ measure point, om is the
measurement error of the i signal at the m™ point composed of the absolute and rela-
tive errors, pP are the parameters of the expected model, and « is the stabilization
parameter responsible for the proximity of the sought model to the expected model.

We optimize the model parameters using the Levenberg-Marquardt optimization
algorithm, using it interval-by-interval. Each parameter may be fixed or searched for
within predefined limits. To reach global minimum, we usually make about a thousand
of optimization iterations each starting from a random initial guess. Typical computa-
tion time for 1000 optimizations is about 4 minutes in non-parallelized version. So
actually instead of hours we need minutes or less for real-time 2D inversion.

First, we try to match the data with 1D layered model. Then we switch to 2D
model if any of following “non-1D” indicators are observed: a) the data match is poor;
b) the resulting models on the neighboring intervals are inconsistent; c) the azimuthal
measurements deviate from “up” or “down” and point to different directions. The re-
sulting 1D layered models and 2D models can be combined all together into the curtain
section if necessary.

Numerical Test with 2D Synthetic Model. To test our approach we consider
scenario with oil-water contact in dipping formation. The model is presented in 2D
curtain section below (Fig. 3). Trajectory, which is represented by red line in Fig. 3a,
Is 200 m long. It is located 2 m above oil-water contact (OWC). The true dip of layers
above OWC is equal to 10 degrees. The water zone has resistivity of 0.7 Ohm-m, dip-
ping layers have alternating resistivity of 100 Ohm-m and 2.5 Ohm-m. The angle be-
tween horizontal projection of the trajectory and the strike axis is equal to 30 degrees.
A similar case with dipping formation was considered in [9].

To simulate synthetic tool measurements for that model the method described in
[1] is employed. Normally distributed random noise with dispersion equal to one stand-
ard measurement error is added to each measurement to more realistically represent
field data.
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Fig. 3. 2D Synthetic Model — a) 2D curtain section view, b) 3D view

EDAR and APR measurements on a 200 m interval along the trajectory are shown
in Fig. 4. Let us look at the EDAR measurements. The dots show the direction to an
excess of conductivity usually referred to as ‘target direction’. Similarly to borehole
Images, the top and bottom of the track correspond to borehole top, while the middle
of the track corresponds to borehole bottom. There are sections where measurements
deviate from strictly “up” or “down” directions. One can note that different measure-
ments point to different directions. Such behavior is an indicator of “non-1D” environ-
ment.

MD[m]
1

T T T T T
2900 2950 3000 3050 3100

. 100
IMVCTA400[N...

IMVCSS400[N... 80
IMVCTA2000L...
IMVCSS2000[... 601,

% o 6905005 6a0fl %
100 %ﬂm&:ﬁﬁﬁ;ﬁ#fﬁ. ‘F-f?n;::""- e e
% ..

e, 06,
oo o e AN 3

80 e fe s ok AN e s

I X

Fig. 4. EDAR and APR measurements. The solid lines are the signal strength
in relative scale from 0 to 100, the dots show the target angle direction.

The results of the 1D inversion on this interval using algorithm described in [10-
12] are displayed in Fig. 5. In synthetic case we have a priori information that the layer-
cake model will have contradiction in boundary orientation due to fact that the OWC
and layer boundaries have different dip. This fact explains why 1D layered model
cannot accurately model this case.

Although the model has only three layers, it is sufficient to produce a consistent
model with good data match. The biggest discrepancy is observed along the 3025-
3050 m interval, where an additional layer is needed. The reconstructed OWC surface
Is continuous and has nearly zero dip. From Fig. 6 it becomes clear how the formation
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structure is arranged, what angles it has, in which direction relative to the structure the
well trajectory goes, and how it intersects each layer.

FPS; 15

Fig. 5. The 1D inversion results with transverse views every 20 m

Fig. 6 and Fig. 7 show results of the 2D inversion and data match. APR and EDAR
measurements are shown in relative scale from 0 to 100.

Fig. 6. The 2D inversion results with transverse views every 20 m
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Fig. 7. The measured and synthetic data match for 2D inversion.
The thin lines are measured data, and the bold lines are synthetic tool responses
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Summary. We compare the interval-by-interval 1D multi-layer inversion and in-
terval-by-interval 2D inversion for the parametric model with two non-parallel bound-
aries on the synthetic dataset generated for the angular unconformity scenario. In this
scenario in view of 1D layered model limitations, 1D inversion cannot reconstruct
OWC and layers as seen in the transverse planes. 2D inversion on most intervals pro-
vides match of all data including azimuthal measurements and makes it possible to
obtain laterally consistent results both in the curtain section and in the transverse
planes. The results of 2D inversion can be used for estimation of the OWC position
and the true dip and dip azimuth of the layers. The developed 2D inversion algorithm
based on ANN forward modeling demonstrates performance and accuracy that are suf-
ficient for real-time applications.
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