НОВЫЙ ВИД ИНДУКЦИОННЫХ ПЕРЕХОДНЫХ ХАРАКТЕРИСТИК, ОСЛОЖНЕННЫХ ВЛИЯНИЕМ БЫСТРОПРОТЕКАЮЩЕЙ ВЫЗВАННОЙ ПОЛЯРИЗАЦИИ

Евгений Юрьевич Антонов

Институт нефтегазовой геологии и геофизики им. А. А. Трофимука СО РАН СО РАН, 630090, Россия, г. Новосибирск, проспект Академика Коптюга, 3, д.ф.-м.н, доцент, главный научный сотрудник, тел. (383) 333-28-16, e-mail: AntonovEY@ipgg.sbras.ru

Николай Олегович Кожевников

Институт нефтегазовой геологии и геофизики им. А. А. Трофимука СО РАН СО РАН, 630090, Россия, г. Новосибирск, проспект Академика Коптюга, 3, д.г.-м.н, профессор, главный научный сотрудник, тел. (383) 333-28-16, e-mail: KozhevnikovNO@ipgg.sbras.ru

Михаил Александрович Корсаков

Институт нефтегазовой геологии и геофизики им. А. А. Трофимука СО РАН СО РАН, 630090, Россия, г. Новосибирск, проспект Академика Коптюга, 3, младший научный сотрудник, тел. (383) 333-28-16, e-mail: KorsakovMA@ipgg. sbras.ru

Обсуждаются эффекты индукционно-вызванной поляризации с несколькими временами релаксации.

Ключевые слова: метод переходных процессов, индукционно-вызванная поляризация, мерзлые породы

A NEW TYPE OF INDUCTIVE TRANSIENT CHARACTERISTICS COMPLICATED BY THE INFLUENCE OF FAST-PROCESSING INDUCED POLARIZATION

Evgeniy Yu. Antonov

Trofimuk Institute of Petroleum Geology and Geophysics (IPGG) SB RAS, 3, Akademika Koptyuga Ave., Novosibirsk, 630090, Russia, Dr. Sc., Chief Scientist, tel. (383) 333-28-16, e-mail: AntonovEY@ipgg.sbras.ru

Nikolay O. Kozhevnikov

Trofimuk Institute of Petroleum Geology and Geophysics (IPGG) SB RAS, 3, Akademika Koptyuga Ave., Novosibirsk, 630090, Russia, Dr. Sc., Prof., Chief Scientist, tel. (383) 333-28-16, e-mail: KozhevnikovNO@ipgg.sbras.ru

Mikhail A. Korsakov

Trofimuk Institute of Petroleum Geology and Geophysics (IPGG) SB RAS, 3, Akademika Koptyuga Ave., Novosibirsk, 630090, Russia, post-graduate, tel. (383) 333-28-16, e-mail: KorsakovMA@ipgg. sbras.ru

The effects of induction-induced polarization with several relaxation times are discussed.

Keywords: transient electromagnetic method, inductively induced polarization, frozen rocks

При проведении съёмок методом переходных процессов в северных районах, где распространены многолетнемерзлые породы, часто проявляются эффекты индукционно-вызванной поляризации (ВПИ). Согласно результатам инверсии переходных характеристик, выполненной с учётом поляризуемости среды на основе формулы для частотно-зависимого комплексного удельного электрического сопротивления [1]:

$$\rho_{CC}(\omega) = \rho_0 \left\{ 1 - m \left[1 - \frac{1}{1 + (i\omega\tau)^c} \right] \right\},\tag{1}$$

эффекты ВПИ порождаются быстро устанавливающейся вызванной поляризацией мёрзлых пород верхней части геологического разреза (ВЧР). Мёрзлые породы ВЧР характеризуются устойчивым набором поляризационных параметров, входящих в формулу (1): поляризуемость *m* заключена во всем возможном диапазоне от 0. до 1. (100 %); постоянная времени релаксации τ поляризационного процесса изменяется от единиц до первых сотен микросекунд. В отличие от *m* и τ показатель степени *c* в большинстве случаев близок к единице. Это свидетельствует об узком диапазоне распределения времён релаксации (дебаевская модель).

Обычно переходная характеристика эдс, осложненная ВПИ демонстрирует двойную смену полярности на ранних временах регистрации. На рис. 1 показан пример таких данных и результатов инверсии, измеренных на одном из участков съёмок методом малоглубинных зондирований становлением поля на п-ве Ямал. Для большинства подобных переходных характеристик удаётся решить обратную задачу в рамках слоистой модели с использованием дебаевской модели релаксации (c=1). На рисунке представлены переходные характеристики эдс, которые принимают отрицательные значения в интервалах времен 66.5–188 мкс (рис. 1а) и 25–99.4 мкс (рис. 1б). В области отрицательных значений переходные характеристики эдс имеют минимумы при t_{min} =88.6 мкс (рис. 1а) и t_{min} =31.5 мкс (рис. 1б). Интервалы положительного и отрицательного сигналов отмечены на поле графиков соответствующими знаками.

Рис. 1. Пример инверсии индукционных переходных характеристик эдс, с типичными проявлениями индукционно-вызванной поляризацией.

В табл. 1 приведены параметры геоэлектрических моделей, полученных при инверсии данных с помощью программы ТЕМ-IP (ИНГГ СО РАН, [2, 3]).

Таблица 1

Модель 1, (рис. 1а)					Модель 2, (рис. 1б)					
N⁰	ρ, Ом∙м	h, м	m	τ, мкс	N⁰	ρ, Ом·м	h, м	т	au, мкс	
1.	156	155	0.3	38	1.	296	146	0.44	17	
2.	3.47	28.2			2.	988	31.3			
3.	50.2	56.5			3.	4.85	32.6			
4.	6.27	126			4.	59.5	59.7			
5.	4.99				5.	4.39	127			
					6.	5.95				

Геоэлектрические модели

Из таблицы видно, что для подбора экспериментальных данных достаточно одного поляризующегося слоя (Модель 1 и Модель 2). Поведение эдс свидетельствует о том, что процесс релаксации является дебаевским с постоянными времени τ 38 мкс и 17 мкс, соответственно. Время релаксации соотносится с временем t_{min} локального минимума как $\tau \sim t_{min} / 2$.

Отметим, что до недавнего времени описанный подход позволял интерпретировать переходные характеристики с проявлением ВПИ. Тем не менее, при инверсии переходных характеристик эдс иногда возникали сложности при подборе модели для данных с интервалом отрицательных значений сигнала. Проблемы обычно относились на счет несовершенства аппаратуры или влияния помех в областях перехода сигнала через ноль. Однако в последние годы геофизическая аппаратура вышла на новый уровень, что способствовало повышению качества регистрации и обработки цифровых сигналов. Кроме этого расширилась география работ методом электромагнитных зондирований.

Благодаря использованию новой аппаратуры те особенности переходных характеристик, о которых ранее изредка упоминалось в публикациях (например: сигналы с несколькими экстремумами в области отрицательных значений или многократная – более двух раз - смена полярности эдс) стали выявляться регулярно. Пример таких переходных характеристик с результатами их интерпретации представлен на рис. 2.

Рис. 2. Пример инверсии индукционных переходных характеристик эдс, с проявлениями индукционно-вызванной поляризацией.

В табл. 2 приведены геоэлектрические модели, полученные в результате инверсии эдс показанных на рис. 2.

Модель 3, (рис. 2а)						Модель 4, (рис. 2б)					
N⁰	ρ, Ом∙м	h, м	т	τ, мкс	N⁰	р, Ом·м	h, м	т	τ, мкс		
1.	128.	51.5	0.33	21.4	1.	154.	45.7	0.54	10.		
2.	365.	50.4	0.48	51.4	2.	351.	90.3	0.81	51.		
3.	311.	97.2	0.79	52.9	3.	4.41	25.3				
4.	3.82	20.9			4.	58.4	36.4				
5.	51.7	30.6			5.	68.0	52.4				
6.	5.14	120.			6.	5.52	123.				
7.	11.5				7.	6.33					

Геоэлектрические модели

Таблица 2

Из рис. 2 видно, что мы имеем дело с более сложным видом поляризации, чем на рис. 1. На графике экспериментальной эдс (рис. 2а) видны два локальных минимума на временах $t_{min,1}$ =56.4 мкс и $t_{min,2}$ =125 мкс в отрицательной области сигнала, расположенном в интервале времен от 47.4 мкс до 188.5 мкс. На графике на рис. 2б эдс четыре раза меняет знак. В интервале времён от 23 мкс до 125.5 мкс наблюдается два отрицательных локальных минимума на временах $t_{min,1}$ =26 мкс и $t_{min,2}$ =77.6 мкс, и между этими минимумами - один положительный максимум при t_{max} =41.3 мкс.

В результате инверсии этих данных получены две геоэлектрические модели (табл. 2). Для подбора эдс на рис. 2а потребовалось три поляризующихся слоя (Модель 3), для эдс с рис. 26 – два поляризующихся слоя (Модель 4). При этом в Модели 3 второй и третий слои имеют близкие значения сопротивлений и времен релаксации. Особенностью, о которой свидетельствуют результаты инверсии, является рост поляризуемости в слоях, расположенных на большей глубине. Причина этого заключается в том, что верхний поляризующий слой «экранирует» нижний поляризующийся; поэтому чтобы нижний слой проявился как поляризующийся он должен иметь поляризуемость и/или время релаксации большие, чем у вышележащего слоя.

Поляризация горных пород может быть обусловлена разными причинами. В одном объекте могут существовать несколько поляризационных процессов с разными временами релаксации [4]. При интерпретации таких процессов используется разложение комплексного удельного сопротивления по спектрам Дебая [5, 6]:

$$\rho_D(\omega) = \rho_0 \left[1 - \sum_{k=1}^{N_D} m_k \left(1 - \frac{1}{1 + i\omega\tau_k} \right) \right], \ m = \sum_{k=1}^{N_D} m_k, \tag{2}$$

где ρ_0 – сопротивление на постоянном токе, N_D – количество членов разложения, m_k , τ_k – параметры поляризации и времени релаксации для входящих в разложе-

326

ние релаксационных процессов, $k=1,...,N_D$, m – суммарная поляризуемость $(0 \le m \le 1)$.

С помощью разработанной нами программы QQIPDD (ИНГГ СО РАН) мы выполнили расчеты переходных характеристик для соосной петлевой установки с генераторной петлёй -100×100 м и приёмной петлёй - 20×20 м на поверхности проводящего поляризующегося полупространства с сопротивлением $\rho_0 = 100 \text{ Ом} \cdot \text{м}$ для двух моделей с дебаевской релаксацией сопротивления (2). Результаты расчетов представлены на рис. 3.

Рис. 3. Переходные процессы для поляризующегося полупространства с сопротивлением 100 Ом·м и двумя временами релаксации.

Вычисления производились для двухкомпонентного (N_D =2) разложения по временным константам: τ_1 =10 мкс, τ_2 =50 мкс (рис. 3а), и τ_1 =10 мкс, τ_2 =100 мкс (рис. 3б), при равных значениях параметров поляризуемости: $m_1=m_2=0.45$. Параметры моделей приведены в легенде рисунков. Сравнение рисунков 2 и 3 позволяет сделать заключение, что пачка поляризующихся слоев может проявляться как один эквивалентный слой с несколькими релаксационными процессами.

Заключение

Представлен анализ переходных характеристик, осложненных эффектом вызванной поляризации, зависящим от нескольких релаксационных процессов.

Приведены результаты инверсии с помощью программы TEM-IP на основе модели с несколькими поляризующимися слоями.

Для моделирования переходных характеристик с учетом нескольких поляризационных процессов в одном слое написана программа QQIPDD (разработанная соавторами). В этой программе используется удельное электрическое сопротивление, описываемое дискретным набором времён релаксации и поляризуемости. Как показало моделирование переходных характеристик модель в виде пачки поляризующихся слоёв (1) эквивалентна одному слою с несколькими поляризационными процессами (2).

Работа выполнена при поддержке проекта ФНИ № 0331-2019-0007 «Геоэлектрика в исследованиях геологической среды: технологии, полевой эксперимент и численные модели».

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Pelton W.H., Ward S.H., Hallof P.G., Sill W.R., Nelson P.H. Mineral discrimination and removal of inductive coupling with multifrequency IP // Geophysics, 1978, v. 43, n 3, P. 588-609.

2. Антонов Е.Ю., Кожевников Н.О., Корсаков М.А. Автоматизированная система для интерпретации данных индукционных импульсных электромагнитных зондирований с учётом индукционно-вызванной поляризации // Геология и геофизика, 2014, Т. 55, №8, С. 1282-1293.

3. Антонов Е.Ю., Кожевников Н.О., Корсаков М.А., Эпов М.И. Программа для ЭВМ "ТЕМ-IP" свидетельство о регистрации программы для ЭВМ RUS 2018612347 от 15.02.2018.

4. Nordsiek S., Weller A. A new approach to fitting induced-polarization spectra. // Geophysics, 2008, 73(6), F235–F245.

5. Tarasov A., Titov K. Relaxation time distribution from time domain induced polarization measurements // Geophysical Journal International, 2007, 170, P. 31–43.

6. Tong M., Li L., Wang W., Jiang Y. Determining capillary-pressure curve, pore-size distribution and permeability from induced polarization of shaley sand. // Geophysics, 2006, 71(3), N33–N40.

REFERENCES

1. Pelton W.H., Ward S.H., Hallof P.G., Sill W.R., Nelson P.H. Mineral discrimination and removal of inductive coupling with multifrequency IP // Geophysics, 1978, v. 43, n 3, P. 588-609.

2. Antonov E.Yu., Kozhevnikov N.O., Korsakov M.A. Software for inversion of TEM data affected by fast-decaying induced polarization // Russian geology and geophysics, 2014, V. 55, №8, P. 1019-1027.

3. Antonov E.Yu., Kozhevnikov N.O., Korsakov M.A., Epov M.I. Programma dlya EVM "TEM-IP" svidetel'stvo o registratsii programmy dlya EVM RUS 2018612347 ot 15.02.2018.

4. Nordsiek S., Weller A. A new approach to fitting induced-polarization spectra. // Geophysics, 2008, 73(6), F235–F245.

5. Tarasov A., Titov K. Relaxation time distribution from time domain induced polarization measurements // Geophysical Journal International, 2007, 170, P. 31–43.

6. Tong M., Li L., Wang W., Jiang Y. Determining capillary-pressure curve, pore-size distribution and permeability from induced polarization of shaley sand. // Geophysics, 2006, 71(3), N33–N40.

© Е. Ю. Антонов, Н. О. Кожевников, М. А. Корсаков, 2021