DOI: 10.33764/2618-981X-2021-2-1-160-170

НОВЫЕ ДАННЫЕ ПО ГИДРОГЕОХИМИИ МИНЕРАЛЬНЫХ ВОД КРЫМСКОГО ПОЛУОСТРОВА

Дмитрий Анатольевич Новиков

Институт нефтегазовой геологии и геофизики им. А. А. Трофимука СО РАН, 630090, Россия, г. Новосибирск, проспект Академика Коптюга 3/6, к.г.-м.н., зав. лабораторией, e-mail: NovikovDA@ipgg.sbras.ru; Новосибирский государственный университет, 630090, Россия, г. Новосибирск, ул. Пирогова, 2, доцент кафедры геологии месторождений нефти и газа и кафедры общей и региональной геологии

Альбина Анатольевна Хващевская

Национальный исследовательский Томский политехнический университет, 634034, Россия, г. Томск, проспект Ленина, 2/5, к.г.-м.н., зав. лабораторией, e-mail: hvashevskaya@tpu.ru

Наталья Геннадьевна Сидорина

Сибирский федеральный научно-клинический центр Федерального медико-биологического агентства, 636035, Россия, г. Северск, ул. Мира, 4, руководитель лаборатории, e-mail: sidorinang@med.tomsk.ru

Анна Андреевна Коханенко

Сибирский федеральный научно-клинический центр Федерального медико-биологического агентства, 636035, Россия, г. Северск, ул. Мира, 4, младший научный сотрудник, e-mail: К A Anna@rambler.ru

Анатолий Витальевич Черных

Институт нефтегазовой геологии и геофизики им. А. А. Трофимука СО РАН, 630090, Россия, г. Новосибирск, проспект Академика Коптюга, 3/6, научный сотрудник, e-mail: ChernykhAV@ipgg.sbras.ru

Анастасия Алексеевна Максимова

Институт нефтегазовой геологии и геофизики им. А. А. Трофимука СО РАН, 630090, Россия, г. Новосибирск, проспект Академика Коптюга, 3/6, инженер, e-mail: rock.nastaya64@gmail.com

Федор Федорович Дульцев

Институт нефтегазовой геологии и геофизики им. А. А. Трофимука СО РАН, 630090, Россия, г. Новосибирск, проспект Академика Коптюга, 3/6, научный сотрудник, e-mail: DultsevFF@ipgg.sbras.ru

В работе представлены актуальные данные по составу 23 месторождений и проявлений минеральных вод Крымского полуострова. Впервые приводится характеристика ранее неизвестных 7 проявлений. Изученные воды отличаются широкой вариацией по химическому составу, геохимическим параметрам среды и содержаниям биологически активных компонентов. Преобладают воды SO_4 -Cl- HCO_3 Na, Cl Na, SO_4 - HCO_3 Mg-Ca-Na, SO_4 -Cl Mg-Na состава с величиной общей минерализации от ультрапресных до рассольных $(0,4-202,9\ г/дм^3)$. По геохимическим параметрам среды они относятся к двум большим группам. Первая харакетризуются восстановительными условиями с Eh от -330,2 до -22,3, Ph от 7,3 до 9,1 и содержанием O_{2pactb} . 0,79-6,48 мг/дм 3 . Вторая – окислительными Eh (+22,1 – +158,5), нейтральными и слабощелочными Ph (7,0 – 8,4) и концентрациями O_{2pactb} . от 2,73 до 6,92 мг/дм 3 . Изученные воды

обладают широким спектром бальнеологических свойств, что позволило выделить 13 типов минеральных вод.

Ключевые слова: гидрогеохимия, минеральные воды, бальнеология, медицинские показания по применению, Крым

NEW DATA ON HYDROGEOCHEMISTRY OF THE MINERAL WATERS OF THE CRIMEAN PENINSULA

Dmitry A. Novikov

Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, 630090, Russia, Novosibirsk, 3/6, Akademika Koptyuga Ave., PhD, head of the laboratory, e-mail: NovikovDA@ipgg.sbras.ru; Novosibirsk State University, 630090, Russia, Novosibirsk, 2, Pirogova st., associate professor

Albina A. Khvashchevskaya

Tomsk Polytechnic University, 634034, Russia, Tomsk, 2/5, Lenina st., PhD, head of the laboratory, e-mail: hvashevskaya@tpu.ru

Natalia G. Sidorina

Siberian Federal Research and Clinical Center of the Federal Medical and Biological Agency, 636035, Russia, Seversk, 4, Mira st., head of the laboratory, e-mail: sidorinang@med.tomsk.ru

Anna A. Kohanenko

Siberian Federal Research and Clinical Center of the Federal Medical and Biological Agency, 636035, Russia, Seversk, 4, Mira st., Junior Researcher, e-mail: sidorinang@med.tomsk.ru

Anatoliy V. Chernykh

Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, 630090, Russia, Novosibirsk, 3/6, Akademika Koptyuga Ave., Researcher, e-mail: ChernykhAV@ipgg.sbras.ru

Anastasia A. Maksimova

Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, 630090, Russia, Novosibirsk, 3/6, Akademika Koptyuga Ave., engineer, e-mail: rock.nastaya64@gmail.com

Fedor F. Dultsev

Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, 630090, Russia, Novosibirsk, 3/6, Akademika Koptyuga Ave., Researcher, e-mail: DultsevFF@ipgg.sbras.ru

Relevant data on the composition of mineral waters from 23 deposits and occurrences in the Crimean Peninsula are presented. The characteristic of 7 occurrences that have been previously unknown is presented. The studied waters are distinguished by broad-range variations in chemical composition, geochemical parameters of the medium, and the concentrations of biologically active components. Waters with the composition SO4-Cl-HCO3 Na, Cl Na, SO4-HCO3 Mg-Ca-Na, SO4-Cl Mg-Nam with TDS from ultra-fresh to brine level (0.4 - 202.9 g/dm3) are dominating. The waters relate to two large groups according to the geochemical parameters of the medium. The first group is characterized by reductive conditions with Eh from -330.2 to -22.3, pH from 7.3 to 9.1 and O2dis-solved concentration 0.79 - 6.48 mg/dm3. The second group is characterized by oxidative Eh (+22.1 - +158.5), neutral and weakly alkaline pH (7,0 - 8,4), and O2dissolved concentrations from 2.73 to 6.92 mg/dm3. The studied waters exhibit a broad range of balneological properties, which allowed us to distinguish 13 types of mineral waters.

Keywords: hydrogeochemistry, mineral waters, balneology, medical indications for application, Crimea

Минеральные воды в Крыму весьма разнообразны и известны с античных времен. Первые упоминания источников минеральных вод в научной литературе встречаются в работах Н.И. Андрусова [1], а их детальные исследования были начаты позднее в начале XX века и отражены в работах В.А. Обручева [2], С.П. Попова [3-4], А.С. Моисеева [5], А. Черепенникова [6], М.М. Фомичева и Л.А. Яроцкого [7-8]. Наиболее крупное обобщение по минеральным водам Крыма выполнено в многотомнике Гидрогеология СССР [9]. В 1980 г. под редакцией А.Е. Бабинец вышла в свет сводная работа по минеральным водам Украинской ССР [10].

Несмотря на длительный период изучения минеральных вод Крымского полуострова, следует отметить, что до сих пор в научной литературе остаются практически не рассмотренными механизмы формирования их состава. Крайне слабо изучен их изотопный состав, распределение радиоактивных и редкоземельных элементов. В последние годы вопросы по гидрогеохимии минеральных вод Крыма поднимались в работах Г.Н. Амеличева и др. [11], К.Д. Бабовой и др. [12], А.С. Кайсинова и др. [13], Д.А. Новикова и др. [14-19].

Крым обладает большим рекреационным потенциалом, важнейшими составляющими которого являются минеральные воды и грязи. Отсюда возникает необходимость на новой аналитической и теоретической базе оценить их состав и бальнеологическую ценность. В пределах Крымского полуострова распространены различные типы минеральных вод: без специфических компонентов и свойств; сульфидные; йодные; бромные; борные; кремнистые; железистые; воды, обогащенные органическим веществом; различного анионного и катионного состава и температуры и др.

В настоящей работе представлены актуальные данные по 23 месторождениям и проявлениям минеральных вод Крыма (рис. 1). Гидрогеохимическое опробование этих объектов проводилось во время полевых работ 2018-2020 гг. Лабораторное изучение химического состава методами титриметрии, ионной хроматографии, масс-спектрометрии с индуктивно связанной плазмой проводилось в ПНИЛ гидрогеохимии ИШПР ТПУ. Выделение групп и типов вод выполнялось в Испытательной лаборатории природных лечебных ресурсов ФГБУ СибФНКЦ ФМБА России согласно ГОСТ 54316-2020 [20].

Изученные воды значительно отличаются по химическому составу, геохимическим параметрам среды и содержаниям специфических компонентов (H_2SiO_3 , H_3BO_3 , I, Br, Se). Доминируют воды SO_4 -Cl-HCO $_3$ Na, Cl Na, SO_4 -HCO $_3$ Mg-Ca-Na, SO_4 -Cl Mg-Na состава с широкой вариацией по величине общей минерализации от 0,4 до 202,9 г/дм 3 . По геохимической обстановке воды можно разделить на две группы: с восстановительными (Eh от -330,2 до -22,3, pH от 7,3 до 9,1 и содержанием O_{2pactb} . 0,79 – 6,48 мг/дм 3) и окислительными (Eh +22,1 – +158,5; pH 7,0 – 8,4; O_{2pactb} . от 2,73 – 6,92 мг/дм 3) условиями. Следует отметить, что ряд водопроявлений требует дополнительных полевых исследований (содер-

жания сероводорода, углекислого газа и радона), которые будут выполнены в 2021 году.

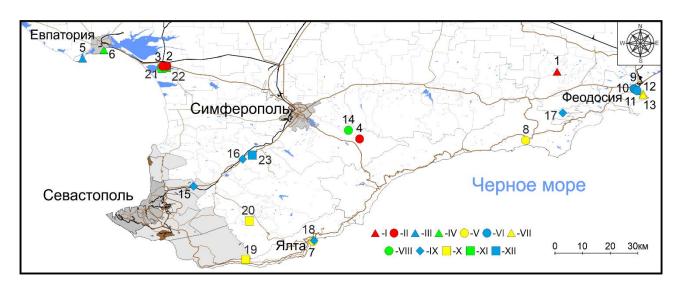


Рис. 1. Местоположение изученных месторождений и проявлений минеральных вод на территории Крымского полуострова

Типы минеральных вод: І -Ходыженский (1 - Айвазовское месторождение, глубина скважины 200 м); ІІ -Карачинский (2 - Сакское месторождение, Санаторий им. Пирогова Министерство обороны РФ, глубина скважины 1001 м; 3 – Сакское месторождение, термальные воды, глубина скважины 960 м; 4 – скважина «У Геологов», Красные пещеры); III – Омский (5 – Евпаторийское месторождение, пансионат Чайка, скважина 10(6243), термальная вода, интервал 980-1050 м, г. Евпатория); IV – Калининградский (6 – бювет Карникитская вода, г. Евпатория); V – Владикавказский (7 – бювет № 1 в Приморском парке, г. Ялта; 8 – Судакское месторождение, скважина №6709 (старый номер 76), глубина 270 м); VI - Анапский (9 – Феодосийское месторождение, скважина № 6614, глубина 200 м; 10 – Феодосийское месторождение, скв. № 6616, глубина 206 м; 11 – бювет, вода Феодосийская, г. Феодосия); VII – Сибирский (12 – Карантин 3, г. Феодосия; 13 – Карантин 2, г. Феодосия); VIII — Ачалукский тип (14 — скважина у с. Дружное); IX — минеральные питьевые столовые воды (15 – скважина у часовни Николая Чудотворца, с. Верхнесадовое; 16 – скважина рядом с с. Глубокий Яр; 17 – термальный источник выше с. Щебетовка; 18 – бювет на ул. Чехова, г. Ялта; 19 – минеральный источник «Жабья радость»); X – маломинерализованные хлоридные кальциево-натриевые йодные (20 – минеральные воды Аджи-Су, каптаж в один колодец); XI – крепко рассольные хлоридные натриевые борные бромные (21 – Сакское озеро, Восточный бассейн, г. Саки; 22 – рапа для бальнеолечения, Санаторий им. Пирогова Министерство обороны РФ, г. Саки); XII – пресные гидрокарбонатно-сульфатные натриевые (23 – Севастьяновская сероводородная скважина).

Исследованные минеральные воды разделены на пять групп (таблица):

- 1) минеральные питьевые столовые (5 проявлений);
- 2) минеральные питьевые лечебные (Айвазовское месторождение);
- 3) минеральные питьевые лечебно-столовые (месторождения: Сакское, Евпаторийское, Судакское и Феодосийское; 6 проявлений);

- 4) маломинерализованные воды Аджи-Су;
- 5) рапа Сакского озера.

Дадим краткую характеристику выделенных групп. Пять проявлений *мине-ральных питьевых столовых вод* были изучены с бальнеологической точки зрения впервые (№ 15-19, рис. 1). Они характеризуются преимущественно SO_4 -HCO₃ Mg-Ca-Na составом с величиной общей минерализации 427-865 мг/дм³ и содержанием кремния 3,48-17,01 мг/дм³.

Характеристика подземных минеральных вод Крымского полуострова

№	Водопроявление	<u>М,</u> <u>г/д</u> <u>м</u> ³ рН	Химическая формула	Спе- цифи- ческие компо- ненты мг/дм ³	Наименование группы и тип минеральной воды
1	Айвазовское месторож- дение, глубина сква- жины 200 м	1,8 8,2	C1 77 HCO ₃ 19 SO ₄ 4 (Na+K) 87 Mg 7 Ca 6	I 12,5 H ₂ SiO ₃ 45,2 H ₃ BO ₃ 14,6 T 22,0°C	Слабоминерализованная хлоридная натриевая йодная минеральная питьевая лечебная вода (Группа XXVI а, Ходыженский тип)**
2	Сакское месторождение, Санаторий им. Пирогова Министерство обороны РФ, глубина скважины 1001 м	1,9 8,05	(HCO ₃ +CO ₃) 51 C1 38 SO ₄ 11 (Na+K) 98 Ca 2	H ₃ BO ₃ 24,8 T 44,1°C	Слабоминерализованная хлоридно-гидрокарбонатная натриевая термальная минеральная питьевая лечебно-столовая вода (Группа VIII, Карачинский тип)
2	Сакское месторождение, термальные воды, глубина скважины 960 м	2,2 8,28	Cl 50 (HCO ₃ +CO ₃) 40 SO ₄ 10 (Na+K) 98 Ca 1 Mg 1	H ₃ BO ₃ 28,6 T 31,7°C	Слабоминерализованная гидрокарбонатно-хлоридная натриевая термальная минеральная питьевая лечебно-столовая вода (Группа VIII, Карачинский тип)
2	Скважина «У Геоло- гов», Красные пещеры	1,3 9,01	(HCO ₃ + CO ₃) 62 C1 21 SO ₄ 17 (Na+K) 97 Mg 3	T 14,6°C	Слабоминерализованная хлоридно-гидрокарбонатная натриевая минеральная питьевая лечебно-столовая вода (Группа VIII, Карачинский тип)**
3	Евпаторийское месторождение, пансионат Чайка, скважина 10(6243), термальная вода, интервал 980-1050 м, г. Евпатория	9 <u>,1</u> 7,79	Cl 90 HCO ₃ 7 SO ₄ 3 (Na+K) 96 Ca 2 Mg 2	H ₃ BO ₃ 60,3 Br 12,2 T 38,5°C	Среднеминерализованная хлоридная натриевая борная термальная минеральная питьевая лечебно-столовая вода (Группа XXVI б, Омский тип)
4	Бювет Карникитская вода, г. Евпатория	3,7 8,45	C1 92 (HCO ₃ + CO ₃) 7 SO ₄ 1 (Na+K) 94 Mg 4 Ca 2	H ₃ BO ₃ 20,0 T 38,6°C	Маломинерализованная хлоридная натриевая термальная минеральная питьевая лечебно-столовая вода (Группа XXVI, Калининградский тип)

Продолжение таблицы

	Γ		T	1	Прооолжение таолицы
5	Бювет № 1 в Примор- ском парке, г. Ялта	1,1 7,26	HCO ₃ 58 SO ₄ 27 Cl 15 Mg 42 Ca 34 (Na+K) 24	H ₂ SiO ₃ 23,5 T 19,7°C	Слабоминерализованная сульфатно-гидрокарбонатная натриево-кальциево-магниевая минеральная питьевая лечебно-столовая вода (Группа X, Владикавказский тип)**
5	Судакское месторож- дение, скважина №6709 (старый номер 76), глубина 270 м	1,2 7,38	SO ₄ 51 HCO ₃ 41 C1 8 Ca 38 (Na+K) 38 Mg 24	H ₂ SiO ₃ 20,9 T 20,5°C	Слабоминерализованная гидрокарбонатно-сульфатная магниево-натриево-кальциевая минеральная питьевая лечебно-столовая вода (Группа X, Владикавказский тип)**
6	Феодосийское месторождение, скважина № 6614, глубина 200 м	3,3 7,49	SO ₄ 57 Cl 25 <u>HCO₃ 18</u> (Na+K) 65 Ca 30 Mg 5	H ₃ BO ₃ 13,8 T 16,0°C	Маломинерализованная хлоридно-сульфатная кальциевонатриевая минеральная питьевая лечебно-столовая вода (Группа XVI, Анапский тип)**
6	Феодосийское месторождение, скв. № 6616, глубина 206 м	2,9 8,43	SO ₄ 59 Cl 35 (HCO ₃ +CO ₃) 6 (Na+K) 80 Mg 14 Ca 6	H ₃ BO ₃ 16,3 T 15,9°C	Маломинерализованная хлоридно-сульфатная натриевая минеральная питьевая лечебно-столовая вода (Группа XVI, Анапский тип)**
6	Бювет, вода Феодосий- ская, г. Феодосия	2 <u>.9</u> 7,54	SO ₄ 46 Cl 34 <u>HCO₃ 20</u> (Na+K) 69 Ca 19 Mg 12	I 2,4 T 24,4 °C	Маломинерализованная гидрокарбонатно-хлоридно-сульфатная натриевая минеральная питьевая лечебно-столовая вода (Группа XVI, Анапский тип)**
7	Карантин 2, г. Феодо- сия	1 <u>.7</u> 7,36	HCO ₃ 38 SO ₄ 35 Cl 27 (Na+K) 50 Mg 32 Ca 18	H ₂ SiO ₃ 17,4 T 24,5°C	Слабоминерализованная хлоридно-сульфатно-гидрокарбонатная магниево-натриевая минеральная питьевая лечебно-столовая вода (Группа VI, Сибирский тип)**
8	Скважина у с. Дружное	1,9 9,12	SO ₄ 62 (HCO ₃ + CO ₃) 29 Cl 9 (Na+K) 98 Ca 1 Mg 1	T 22,4°C	Слабоминерализованная гидро- карбонатно-сульфатная натрие- вая минеральная питьевая ле- чебно-столовая вода (Группа XI, Ачалукский тип)**
9*	Скважина у часовни Николая Чудотворца, с. Верхнесадовое	<u>0,5</u> 8,44	(HCO ₃ + CO ₃) 70 Cl 16 SO ₄ 14 (Na+K) 71 Mg 19 Ca 10	T 24,5°C	Пресная гидрокарбонатная натриевая минеральная питьевая столовая вода**
9*	Скважина рядом с с. Глубокий Яр	<u>0,5</u> 7,91	(HCO ₃ + CO ₃) 80 SO ₄ 13 Cl 7 (Na+K) 48 Ca 32 Mg 20	H ₂ SiO ₃ 32,5 T 16,9°C	Пресная гидрокарбонатная магниево-кальциево-натриевая минеральная питьевая столовая вода**
9*	Термальный источник выше с. Щебетовка	<u>0,7</u> 7,47	HCO ₃ 79 SO ₄ 13 C1 8 Ca 66 Mg 20 (Na+K) 14	H ₂ SiO ₃ 25,9 T 20,3°C	Пресная гидрокарбонатная магниево-кальциевая минеральная питьевая столовая вода**
9*	Бювет на ул. Чехова, г. Ялта	0,5 7,44	HCO ₃ 69 SO ₄ 17 Cl 14 Ca 63 (Na+K) 21 Mg 16	T 19,4°C	Пресная гидрокарбонатная натриево-кальциевая минеральная питьевая столовая вода**

Окончание таблицы

			HCO ₃ 92 Cl 7		Пресная гидрокарбонатная
9*	Минеральный источ- ник «Жабья радость»	<u>0,9</u> 7,04	<u>SO_{4_1}</u>	T	натриево-магниево-кальциевая
			Ca 53 Mg 27	17,0°C	минеральная питьевая столовая
			(Na+K) 20		вода
10	Минеральные воды Аджи-Су, каптаж в один колодец	3,4 7,4	Cl 96 HCO ₃ 3 SO ₄ 1 (Na+K) 59 Ca 40 Mg 1	I 7,2 H ₃ BO ₃ 25,7 T 17,3°C	Маломинерализованная хлорид- ная кальциево-натриевая йодная
11	Сакское озеро, Восточ- ный бассейн, г. Саки	203, 5 8,01	C1 88 SO ₄ 12 (Na+K) 80 Mg 18 Ca 2	H ₃ BO ₃ 234,12 Br 304,7 Se 0,97 T 26,8°C	Крепко рассольная хлоридная натриевая борная бромная
11	Рапа для бальнеолечения, Санаторий им. Пирогова Министерство обороны РФ, г. Саки	190, 2 7,88	C1 85 SO ₄ 15 (Na+K) 79 Mg 18 Ca 3	H ₃ BO ₃ 50,9 Br 101,8 Se 0,31 T 24,7°C	Крепко рассольная хлоридная натриевая борная бромная
12	Севастьяновская сероводородная скважина	<u>0,8</u> 7,88	HCO ₃ 62 SO ₄ 27 Cl 11 (Na+K) 81 Ca 14 Mg 5	H ₂ SiO ₃ 42,3 T 16,0°C	Пресная гидрокарбонатно-суль- фатная натриевая**

Примечание: Номер в таблице соответствует бальнеологической группе на рисунке 1; * — воды могут использоваться в качестве минеральных питьевых только при соответствии санитарно-бактериологических, радиологических показателей и показателей химической безопасности согласно ГОСТ 54316-2020 «Воды минеральные природные питьевые»; ** - требуются дополнительные полевые исследования содержания H_2S (возможно изменение бальнеологического типа).

Геохимические параметры среды изменяются от восстановительных до окислительных с Eh -268,2 -+158,5 мB, pH 7,0 -8,44, содержанием $O_{2\text{раств.}}$ 1,79 -6,92 мг/дм³. Для установления типа вод и бальнеологической группы необходимы дополнительные исследования.

Воды второй группы минеральные питьевые лечебные Айвазовского месторождения (№ 1, рис. 1) HCO₃-Cl Na состава с величиной общей минерализации $1706~\text{мг/дм}^3$ и содержанием кремния $16,17~\text{мг/дм}^3$. Геохимические параметры среды восстановительные с Eh -330,2 мB, pH 8,2, содержанием $O_{2\text{раств.}}$ 0,79 мг/дм³. Согласно медицинским показаниям по внутреннему применению минеральные воды пригодны для лечения хронического гастрита с нормальной и пониженной секреторной функцией желудка, болезней кишечника, печени, желчного пузыря и желчевыводящих путей, поджелудочной железы, органов пищеварения после оперативных вмешательств по поводу язвенной болезни желудка, обмена веществ и мочевыводящих путей.

Воды третьей группы минеральные питьевые лечебно-столовые, характеризующиеся довольно изменчивым химическим составом с преобладающим Cl Na типом и величиной общей минерализации 1098 - 9038 мг/дм³ и содержанием кремния 1,19 - 9,20 мг/дм³ (№ 2-14, рис. 1). Геохимические параметры среды изменяются от восстановительных до окислительных с Eh -302,5 - +152,8 мВ, рН 7,3 - 9,1, содержанием $O_{2\text{раств.}}$ 1,18 - 6,48 мг/дм³. Согласно медицинским показаниям по внутреннему применению минеральные питьевые лечебно-столовые воды пригодны для лечения болезни пищевода, хронического гастрита и гастрита с нормальной и пониженной секреторной функцией желудка, язвенной болезни желудка и 12-перстной кишки, болезней кишечника, печени, желчного пузыря и желчевыводящих путей, поджелудочной железы, нарушения органов пищеварения после оперативных вмешательств по поводу язвенной болезни желудка, болезни обмена веществ и мочевыводящих путей.

Четвертая группа представлена минеральными водами источника Аджи-Су (№ 20, рис. 1). Воды характеризуются С1 Са-Nа составом с величиной общей минерализации 3317 мг/дм³ и содержанием кремния 8,44 мг/дм³. Геохимические параметры среды окислительные с Eh -267,4 мВ, рН 7,4, содержанием О_{2раств.} 2,39–6,48 мг/дм³. Требует дополнительного изучения содержание радона в водах.

Воды пятой группы представлены рапой Сакского озера (№ 21-22, рис. 1) с SO_4 -Cl Mg-Na составом и величиной общей минерализации $190-203\ г/дм^3$, с содержанием кремния не превышающем $4,77\ мг/дм^3$. Геохимические параметры среды изменяются от слабовосстановительных до слабоокислительных с $Eh-22,3-+22,1\ мB$, pH 7,9-8,0, содержанием O_{2pactb} . $3,36-5,33\ мг/дм^3$. Согласно медицинским показаниям по уровню минерализации и наличию бальнеологически ценных компонентов озерная вода может использоваться наружно (в виде ванн) при болезнях системы кровообращения, нервной системы, костномышечной системы, органов пищеварения, эндокринной системы, расстройства питания и нарушения обмена веществ, мочеполовой системы и болезнях кожи.

Резюмируя вышесказанное, отметим, что бальнеологические ресурсы Крымского полуострова в настоящее время крайне слабо изучены. Этот вопрос требует пристального внимания со стороны научных, производственных организаций и региональных властей, поскольку Крым необходимо в полной мере сделать круглогодичным курортом. Обширный материал, полученный авторами в течение последних трех лет позволил выявить семь ранее неизвестных проявлений минеральных вод. Комплексное исследование природных вод Крымского полуострова значительно увеличат их число в будущем.

Исследование выполнено при финансовой поддержке проекта ФНИ № 0331-2019-0025, РФФИ и города Севастополь в рамках гранта № 18-45-920032 р_а и Государственного Задания РФ «Наука» в рамках проекта № FSWW-0022-2020.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Андрусов Н.И. Геологические исследования на Керченском полуострове в 1882 и 1883 гг. // Зап. Новороссийского общ-ва естествоисп., т.IX. – СПб, 1884.

- 2. Обручев В.А. Минеральный источник Бурун-Кан, близ Бахчисарая как будущий курорт // «Курортное дело». -1924. -№ 4-5.
- 3. Попов С.П. Минеральные источники Крыма. Симферополь: Тр. Крымского научисслед. И-та, 1930. т. II, вып. III.
- 4. Попов С.П. Геохимический очерк Крымских подземных вод и источников. Симферополь: Тр. Крым. Пединститута. «Химия», 1935. т. V.
- 5. Моисеев А.С. Гидрогеологический очерк г. Севастополя и его окрестностей. Тр. ВГРО, Геолиздат, 1932.
- 6. Черепенников А. Геохимические особенности природного газа и воды источника Аджи-Су в Крыму. Тр. Геол.-развед. Бюро газов. месторожд., 1932. вып. 2,
- 7. Фомичев М.М., Яроцкий Л.А. Чокракские сероводородные воды // «Вопросы курортологии». -1938. -№ 1-2.
- 8. Фомичев М.М. Основные типы, области распространения и перспективы использования минеральных вод Крыма // «Вопросы курортологии». 1941. №3-4.
- 9. Гидрогеология СССР. Том VIII. Крым. / Гл. редактор академик А.В. Сидоренко. Москва: Издательство «Недра», 1971. 55 с.
- 10. Обзор минеральных вод Украинской ССР / А.С. Алексеева, В.Д. Овчарова, Н.А. Лысак. Киев: Издательство Центральной тематической экспедиции Министерства геологии УССР, 1980. 770 с.
- 11. Амеличев Г.Н., Токарев И.В., Токарев С.В., Крайнюкова И.А., Бурлакова Н.С. Комплексная оценка возраста и установление условий формирования минеральных вод "Бишули" (равнинный Крым) на основе изотопно-геохимических данных. // Ученые записки Крымского федерального университета имени В.И. Вернадского. География. Геология. 2017. Т. 3 (69). \mathbb{N} 2. С. 130-150.
- 12. Бабова К.Д., Лобода М.В., Никипелова Е.М. Справочник Минеральные лечебно-столовые воды Украины. Коломия. 1998. 207с.
- 13. Кайсинова А.С., Глухов А.Н., Данилов С.Р., Текеева Ф.И. Химический состав и свойства минеральной воды "Бишули" (с. Пятихатка Красногвардейский район, республика Крым) и возможности её использования в бальнеологических целях. // Курортная медицина. − 2016. № 4. C. 13-17.
- 14. Nichkova L.A., Novikov D.A., Chernykh A.V., Dultsev F.F., Sigora G.A., Khomenko T.Yu. Geochemistry of natural waters of the Baydar valley (Crimean Peninsula) // E3S Web of Conferences. $-2019.-V.\ 98.-No\ 01036.$
- 15. Novikov D.A., Nichkova L.A., Chernykh A.V., Dultsev F.F., Pyryaev A.N., Sigora G.A., Khomenko T.Yu. Distribution of the stable isotopes (δ18O, δD и δ13C) in natural waters of the Baydar valley (Crimean Peninsula) // E3S Web of Conferences. − 2019. − V. 98. − № 01038
- 16. Новиков Д.А., Черных А.В., Дульцев Ф.Ф. Новый взгляд на гидрогеологические условия города федерального значения Севастополь // Известия Томского политехнического университета. Инжиниринг георесурсов. -2019. Т. 330. № 8. С. 105-122. DOI 10.18799/24131830/2019/8/2217 (a)
- 17. Новиков Д.А., Черных А.В., Дульцев Ф.Ф. Оценка качества подземных вод верхнеюрских отложений юго-западных районов Крымского полуострова для целей питьевого и сельскохозяйственного водоснабжения // Экология и промышленность России. 2019. Т. 23. \mathbb{N} 4. С. 52-57 (б)
- 18. Новиков Д.А., Копылова Ю.Г., Черных А.В., Дульцев Ф.Ф., Хващевская А.А. Геохимические типы природных вод Байдарской долины (Крымский полуостров) // Труды Ферсмановской научной сессии ГИ КНЦ РАН. 2020. № 17. С. 401-405. https://doi.org/10.31241/FNS.2020.17.077 (a)
- 19. Новиков Д.А., Копылова Ю.Г., Черных А.В., Дульцев Ф.Ф., Пыряев А.Н., Хващевская А.А., Ничкова Л.А., Сигора Г.А., Яхин Т.А. Новые изотопно-гидрогеохимические

данные по составу природных вод Байдарской долины (Крымский полуостров) // Геология и геофизика, 2020(a) DOI: 10.15372/GiG2020137 (б)

20. ГОСТ Р 54316-2020 Воды минеральные природные питьевые. Общие технические условия // Система стандартов по информации, библиотечному и издательскому делу. Москва: Стандартинформ, 2020.

REFERENCES

- 1. Andrusov N.I. Geologicheskie issledovaniya na Kerchenskom poluostrove v 1882 i 1883 gg. // Zap. Novorossijskogo obshch-va estestvoisp., t.IX. SPb, 1884.
- 2. Obruchev V.A. Mineral'nyj istochnik Burun-Kan, bliz Bahchisaraya kak budushchij kurort // «Kurortnoe delo». − 1924. − № 4-5.
- 3. Popov S.P. Mineral'nye istochniki Kryma. Simferopol': Tr. Krymskogo nauch.-issled. I-ta, 1930. t. II, vyp. III.
- 4. Popov S.P. Geohimicheskij ocherk Krymskih podzemnyh vod i istochnikov. Simferopol': Tr. Krym. Pedinstituta. «Himiya», 1935. t. V.
- 5. Moiseev A.S. Gidrogeologicheskij ocherk g. Sevastopolya i ego okrestnostej. Tr. VGRO, Geolizdat, 1932.
- 6. CHerepennikov A. Geohimicheskie osobennosti prirodnogo gaza i vody istochnika Adzhi-Su v Krymu. Tr. Geol.-razved. Byuro gazov. mestorozhd., 1932. vyp. 2,
- 7. Fomichev M.M., YArockij L.A. CHokrakskie serovodorodnye vody // «Voprosy kurortologii». 1938. № 1-2.
- 8. Fomichev M.M. Osnovnye tipy, oblasti rasprostraneniya i perspektivy ispol'zovaniya mineral'nyh vod Kryma // «Voprosy kurortologii». -1941. N03-4.
- 9. Gidrogeologiya SSSR. Tom VIII. Krym. / Gl. redaktor akademik A.V. Sidorenko. Moskva: Izdatel'stvo «Nedra», 1971.-55 s.
- 10. Obzor mineral'nyh vod Ukrainskoj SSR / A.S. Alekseeva, V.D. Ovcharova, N.A. Lysak. Kiev: Izdatel'stvo Central'noj tematicheskoj ekspedicii Ministerstva geologii USSR, 1980. 770 s.
- 11. Amelichev G.N., Tokarev I.V., Tokarev S.V., Krajnyukova I.A., Burlakova N.S. Kompleksnaya ocenka vozrasta i ustanovlenie uslovij formirovaniya mineral'nyh vod "Bishuli" (ravninnyj Krym) na osnove izotopno-geohimicheskih dannyh. // Uchenye zapiski Krymskogo federal'nogo universiteta imeni V.I. Vernadskogo. Geografiya. Geologiya. − 2017. − T. 3 (69). − № 2. − S. 130-150.
- 12. Babova K.D., Loboda M.V., Nikipelova E.M. Spravochnik Mineral'nye lechebno-stolovye vody Ukrainy. Kolomiya. 1998. 207s.
- 13. Kajsinova A.S., Gluhov A.N., Danilov S.R., Tekeeva F.I. Himicheskij sostav i svojstva mineral'noj vody "Bishuli" (s. Pyatihatka Krasnogvardejskij rajon, respublika Krym) i vozmozhnosti eyo ispol'zovaniya v bal'neologicheskih celyah. // Kurortnaya medicina. − 2016. − № 4. − S. 13-17.
- 14. Nichkova L.A., Novikov D.A., Chernykh A.V., Dultsev F.F., Sigora G.A., Khomenko T.Yu. Geochemistry of natural waters of the Baydar valley (Crimean Peninsula) // E3S Web of Conferences. -2019. V. 98. November 01036.
- 15. Novikov D.A., Nichkova L.A., Chernykh A.V., Dultsev F.F., Pyryaev A.N., Sigora G.A., Khomenko T.Yu. Distribution of the stable isotopes ($\delta18O$, δD i $\delta13C$) in natural waters of the Baydar valley (Crimean Peninsula) // E3S Web of Conferences. -2019. -V. 98. -N 01038
- 16. Novikov D.A., CHernyh A.V., Dul'cev F.F. Novyj vzglyad na gidrogeologicheskie usloviya goroda federal'nogo znacheniya Sevastopol' // Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. − 2019. − T. 330. − № 8. − S. 105-122. DOI 10.18799/24131830/2019/8/2217 (a)
- 17. Novikov D.A., CHernyh A.V., Dul'cev F.F. Ocenka kachestva podzemnyh vod verhneyurskih otlozhenij yugo-zapadnyh rajonov Krymskogo poluostrova dlya celej pit'evogo i sel'skohozyajstvennogo vodosnabzheniya // Ekologiya i promyshlennost' Rossii. − 2019. − T. 23. − № 4. − S. 52-57 (b)

- 18. Novikov D.A., Kopylova YU.G., CHernyh A.V., Dul'cev F.F., Hvashchevskaya A.A. Geohimicheskie tipy prirodnyh vod Bajdarskoj doliny (Krymskij poluostrov) // Trudy Fersmanovskoj nauchnoj sessii GI KNC RAN. 2020. № 17. S. 401-405. https://doi.org/10.31241/FNS.2020.17.077 (a)
- 19. Novikov D.A., Kopylova YU.G., CHernyh A.V., Dul'cev F.F., Pyryaev A.N., Hvashchevskaya A.A., Nichkova L.A., Sigora G.A., YAhin T.A. Novye izotopno-gidrogeohimicheskie dannye po sostavu prirodnyh vod Bajdarskoj doliny (Krymskij poluostrov) // Geologiya i geofizika, 2020(a) DOI: 10.15372/GiG2020137 (b)
- 20. GOST R 54316-2020 Vody mineral'nye prirodnye pit'evye. Obshchie tekhnicheskie usloviya // Sistema standartov po informacii, bibliotechnomu i izdatel'skomu delu. Moskva: Standartinform, 2020.
 - © Д. А. Новиков, А. А. Хващевская, Н. Г. Сидорина, А. А. Коханенко, А. В. Черных, А. А. Максимова, Ф. Ф. Дульцев, 2021