ИЗОТОПНЫЙ СОСТАВ (Н, О И С) ПРИРОДНЫХ ВОД НОВОСИБИРСКОЙ ГОРОДСКОЙ АГЛОМЕРАЦИИ

Дмитрий Анатольевич Новиков

Институт нефтегазовой геологии и геофизики им. А. А. Трофимука СО РАН, 630090, Россия, г. Новосибирск, проспект Академика Коптюга, 3/6, к.г.-м.н., зав. лабораторией, e-mail: NovikovDA@ipgg.sbras.ru; Новосибирский государственный университет, 630090, Россия, г. Новосибирск, ул. Пирогова, 2, доцент кафедры геологии месторождений нефти и газа и кафедры общей и региональной геологии

Александр Николаевич Пыряев

Институт геологии и минералогии им. В. С. Соболева СО РАН, 630090, Россия, г. Новосибирск, проспект Академика Коптюга, 3, к.х.н., научный сотрудник, e-mail: pyrayev@igm.nsc.ru; Новосибирский государственный университет, 630090, Россия, г. Новосибирск, ул. Пирогова, 2, ассистент кафедры химической и биологической физики

Федор Федорович Дульцев

Институт нефтегазовой геологии и геофизики им. А. А. Трофимука СО РАН, 630090, Россия, г. Новосибирск, проспект Академика Коптюга, 3/6, научный сотрудник, e-mail: DultsevFF@ipgg.sbras.ru

Анатолий Витальевич Черных

Институт нефтегазовой геологии и геофизики им. А. А. Трофимука СО РАН, 630090, Россия, г. Новосибирск, проспект Академика Коптюга, 3/6, научный сотрудник, e-mail: ChernykhAV@ipgg.sbras.ru

Анна Федоровна Сухорукова

Институт нефтегазовой геологии и геофизики им. А. А. Трофимука СО РАН, 630090, Россия, г. Новосибирск, проспект Академика Коптюга, 3/6, к.г.-м.н., научный сотрудник, e-mail: SukhorukovaAF@ipgg.sbras.ru; Новосибирский государственный университет, 630090, Россия, г. Новосибирск, ул. Пирогова, 2, доцент кафедры общей и региональной геологии

Антон Сергеевич Деркачев

Институт нефтегазовой геологии и геофизики им. А. А. Трофимука СО РАН, 630090, Россия, г. Новосибирск, проспект Академика Коптюга, 3/6, инженер, e-mail: DerkachyovAS@ipgg.sbras.ru

Анастасия Алексеевна Максимова

Институт нефтегазовой геологии и геофизики им. А. А. Трофимука СО РАН, 630090, Россия, г. Новосибирск, проспект Академика Коптюга, 3/6, инженер, e-mail: rock.nastaya64@gmail.com

В работе представлены первые данные по региональному распределению изотопного состава кислорода и водорода вод, а также углерода водорастворенной углекислоты в природных поверхностных и подземных инфильтрационных водах Новосибирской городской агломерации. Для представленной выборки проб получен вектор изменения значений δD и $\delta^{18}O$ в изучаемом регионе от -112 до -126 ‰ и от -14 до -16 ‰, соответственно. Водорастворенная углекислота изученных вод имеет ожидаемый биогенный генезис, изотопный состав углерода ($\delta^{13}C$ от -14,0 до -7,0 ‰) указывает на ее участие в процессах силикат-карбонатного выветривания. Ключевые слова: поверхностные и подземные воды, стабильные изотопы кислорода, водорода, углерода, Новосибирская городская агломерация, Западная Сибирь

ISTOPIC COMPOSITION (H, O AND C) OF NATURAL WATERS OF THE NOVOSIBIRSK CITY AGLOMERATION

Dmitry A. Novikov

Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, 630090, Russia, Novosibirsk, 3/6, Akademika Koptyuga Ave., PhD, head of the laboratory, e-mail: NovikovDA@ipgg.sbras.ru; Novosibirsk State University, 630090, Russia, Novosibirsk, 2, Pirogova st., associate professor

Aleksandr N. Pyrayev

Sobolev Institute of Geology and Mineralogy SB RAS, 630090, Russia, Novosibirsk, 3, Akademika Koptyuga Ave., PhD, Researcher, e-mail: pyrayev@igm.nsc.ru Novosibirsk State University, 630090, Russia, Novosibirsk, 2, Pirogova st., assistant

Fedor F. Dultsev

Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, 630090, Russia, Novosibirsk, 3/6, Akademika Koptyuga Ave., Researcher, e-mail: DultsevFF@ipgg.sbras.ru

Anatoliy V. Chernykh

Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, 630090, Russia, Novosibirsk, 3, Akademika Koptyuga Ave., Researcher, e-mail: ChernykhAV@ipgg.sbras.ru

Anna F. Sukhorukova

Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, 630090, Russia, Novosibirsk, 3/6, Akademika Koptyuga Ave., PhD, Researcher, e-mail: SukhorukovaAF@ipgg.sbras.ru; Novosibirsk State University, 630090, Russia, Novosibirsk, 2, Pirogova st., associate professor

Anton S. Derkachov

Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, 630090, Russia, Novosibirsk, 3/6, Akademika Koptyuga Ave., engineer, e-mail: DerkachyovAS@ipgg.sbras.ru

Anastasia A. Maksimova

Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, 630090, Russia, Novosibirsk, 3/6, Akademika Koptyuga Ave., engineer, e-mail: rock.nastaya64@gmail.com

The paper presents the first data on the regional distribution of the isotopic composition of oxygen and hydrogen in waters, as well as the carbon of water-dissolved carbon dioxide in natural surface and underground infiltration waters of the Novosibirsk urban agglomeration. For the presented sample of samples, the vector of changes in the values of δD and $\delta^{18}O$ in the studied region was obtained from -112 to -126 ‰ and from -14 to -16 ‰, respectively. The water-dissolved carbon dioxide of the studied waters has the expected biogenic genesis, the isotopic composition of carbon ($\delta^{13}C$ from -14.0 to -7.0 ‰) indicates its participation in the processes of silicate-carbonate weathering.

Keywords: surface and underground waters, stable isotopes of oxygen, hydrogen, carbon, Novosibirsk urban agglomeration, Western Siberia

Локальные линии метеорных вод (LMWL – Local meteoric water line) [1-7] являются важным инструментом при интерпретации генезиса природных вод, поскольку дают представление о распределении стабильных изотопов кислорода и водорода в атмосферных осадках заданного региона, что позволяет с высокой достоверностью выделить из ряда полученных данных воды, отвечающие метеорному происхождению. Относительные концентрации изотопов D и ¹⁸O в метеорных водах, определяемые условиями формирования и выпадения атмосферных осадков, также имеют тенденцию к региональному (территориальному) распределению. Они могут существенно различаться внутри заданной области как ввиду проявления высотных градиентов, так и за счет постепенного изменения (облегчения) изотопного состава атмосферных осадков по мере перемещения облаков от места их формирования к точке их полной разгрузки [1]. Сочетание актуальной локальной линии метеорных вод с картой регионального распределения изотопного состава кислорода и водорода атмосферных осадков позволит более достоверно интерпретировать генезис вод изучаемого региона, обозначать с большей вероятностью области питания и разгрузки выбранных водопунктов.

В настоящей работе предпринята попытка обозначить вектор изменения регионального распределения изотопного состава кислорода и водорода поверхностных вод Новосибирской области, выявить влияние эффекта эвапотранспирации вод, а также их взаимодействия с окружением на основании данных по изотопному составу водорастворенного углерода.

В течение 2019-2021 гг. было проведено обширное исследование поверхностных и подземных вод Новосибирской городской агломерации (НГА). Была собрана представительная коллекция из более 200 проб, характеризующих поверхностные и подземные воды. Часть полученных данных, дающих общее представление о распределении относительных концентраций стабильных изотопов в природных водах, приведена в настоящей работе. Для удаления песка, мелкодисперсных взвесей и возможных примесей на месте отбора пробы фильтровались через целлюлозный фильтр (0,45 мкм) с помощью системы вакуумной фильтрации, собирались в герметичные пробирки 50 мл, пробки запечатывались парафильмом (parafilm) для минимизации газообмена с окружением при транспортировке и хранении. Исследование изотопного состава кислорода, водорода вод, а также углерода водорастворенной углекислоты (DIC – dissolved inorganic carbon) проводилось в Аналитическом центре МИИ Института геологии и минералогии им. В.С. Соболева СО РАН на изотопном масс-спектрометре FinniganTM MAT 253, снабженном приставками пробоподготовки H/Device и GasBench II. Значения δD , $\delta^{18}O$ и $\delta^{13}C_{DIC}$ определяли в соответствии с известными методиками [8-12]. Все измерения проводились относительно материалов сравнения Международного агентства по атомной энергии [13]: NBS-18 и NBS-19 - при измерениях $\delta^{13}C_{DIC}$ в водах; VSMOW2, SLAP2 и GISP – при измерениях δD и $\delta^{18}O$ в водах. Погрешность измерений не превышала 0,2 ‰ при анализе изотопного состава углерода, 0,3 ‰ – кислорода и 2 ‰ – водорода.

Расположение точек отбора указано на рисунке 1 а. Изотопная характеристика отобранных проб приведена в таблице 1. Для выявления стабильности изотопных характеристик у некоторых водопунктов пробоотбор проводился за 2019 и 2020 годы. Пробоотбор по возможности проводился как из поверхностных водоемов, так и из близлежащих скважин.

Отобранные воды имеют выраженную щелочную среду (pH изменяется в диапазоне от 7,4 до 8,4), величина общей минерализации варьирует в диапазоне от 214 до 712 мг/дм³. Превалирующими анионами в большинстве вод выступают HCO_3^- и SO_4^{2-} , содержание которых колеблется от 137 до 442 мг/дм³ и от 4,6 до 96 мг/дм³, соответственно, при мольном соотношении SO_4^{2-}/HCO_3^- от 0,01 до 0,16. Углекислый газ и карбонат-ион в водах присутствуют либо в следовых количествах, либо ниже порога определения. Концентрация DIC в водах, рассчитанная как сумма диссоциатов угольной кислоты (CO_2 + HCO_3^- + CO_3^{2-}), изменяется от 2,3 до 8,5 ммоль/дм³. Воды характеризуются диапазоном значений δD и $\delta^{18}O$ от -139,4 до -112,5 ‰ и от -18,9 до -14,4 ‰, соответственно при $\delta^{13}C$ от -14,0 до -7,0 ‰.

Несмотря на достаточно широкий диапазон вариации изотопного состава кислорода и водорода в исследованных водах, все пары значений $\delta D - \delta^{18}O$ для них ложатся очень близко к глобальной [14] и локальной [15] линиями метеорных вод (см. рис 1б.), что подтверждает метеорное происхождение поверхностных вод и инфильтрационное – для подземных [16]. Небольшой положительный кислородный сдвиг (0,1-1 ‰) относительно GMWL, выраженный, в первую очередь, для поверхностных вод, по-видимому, является следствием эффекта испарения вод [1]. Важно отметить, что имеющаяся на текущий момент линия локальных метеорных вод [15], не обновлялась с 90-х годов прошлого столетия, что поднимает вопрос о необходимости ее актуализации, обновления и также является одной из задач настоящего исследования: на текущий момент проводится сбор и анализ соответствующего материала.

Представленные в настоящей работе данные дают представление не только об общем распределении изотопного состава кислорода и водорода в метеорных водах, но также позволяют создать модель их регионального распределения. Поскольку эффект эвапотранспирации может существенно сказаться на изотопном составе вод, питающих поверхностные водоемы [17], интерес представляло сравнить изотопный состав поверхностных и подземных вод неглубоких водоносных горизонтов. Считается, что изотопный состав вторых, питающихся за счет инфильтрации атмосферных осадков через зону аэрации, в целом характеризуют средневзвешенные по сезонам года концентрации тяжелых изотопов в атмосферных осадках данного региона [1]. Соответственно, получаемая дельта в значениях δD и $\delta^{18}O$ для поверхностных и неглубоко залегающих подземных вод даст представление о проявлениях эффектов эвапотранспирации.

Рис. 1: а – карта-схема отбора проб (описание представлено в таблице 1); б – Значения δD и δ¹⁸O для природных вод Новосибирской агломерации относительно GMWL [14] и LMWL [15].

1 – евсинская свита (N₁ev); 2 – бещеульская свита (N₁bš); 3 – журавская свита (P_3 zr); 4 – новомихайловская свита (P_3 nm); 5 – Елбашинская свита и нижнебалахонская подсерия объединенные (C₁₋₃el-bl₁); 6 – евсеевский горизонт (C₁₋₂ec); 7 – лагерносадская (мильтющинская) толща (C₁ls); 8 – саламатовская и ярская толщи нерасчлененные ($D_3 - C_1$ sm-jar); 9 – юргинская свита (D_3 jur); 10 – подонинская свита (D_3 pd); 11 – пачинская свита (D_3 pč); 12 – укропская свита (D_3uk); 13 – тогучинская свита (D_2tg); 14 – буготакская свита (D_2bg); Барлакский гранит -лейкогранитовый мезоабисальный комплекс: 15 – вторая фаза, монцолейкограниты и лейкограниты биотитовые среднезернистые, реже монцограниты биотитовые и амфибол-биотитовые (єї T₁₋₂b₂); 16 – первая фаза, монцолейкограниты и лейкограниты биотитовые среднезернистые, реже монцограниты биотитовые и амфибол-биотитовые (єхТ₁₋₂b₁); Приобский монцодиорит-граносиенит-гранитовый мезоабисальный комплекс: 17 – вторая фаза, монцограниты, граносиениты, граниты, гранодиориты амфиболовые среднезернистые, порфировидные с директивной текстурой ($(\epsilon x P_3 - T_1 p_2)$; 18 – третья фаза, монцограниты биотитовые мелкозернистые (єхР3-Т1р3); Буготакско-тогучинский риодацит-базальтовый комплекс: 19 – дайки; 20 – контактовые роговики и ороговикованные породы; 21 – позднемеловая – эоценовая кора выветривания; 22 – разломы; 23 – административная граница г. Новосибирска; 24 – местоположение объектов исследования: 1 – п. Новобибеево; 2 – Инские источники; 3 – р. Иня; рядом с мостом Бердского шоссе; 4 – Карьер Борок; 5 – р. Обь, Заельцовский бор, вблизи детской железной дороги; 6 – затон № 3 (Яринский); 7 - р. Тула (около моста, ул. Сибиряков Гвардейцев), 8 - р. Тула (рядом с кольцом по ул. Петухова, СНТ Полянка); 9 - р. Тула до Святого источника; 10 - Святой источник, с. Верх-Тула; 25 – подземные воды; 26 – поверхностные воды.

Таблица 1

Характеристика стабильных изотопов H, O и C для природных вод Новосибирской городской агломерации

N⁰	Описание пробы	δD, ‰	δ ¹⁸ O,	DIC,	SO4 ²⁻ ,	$\delta^{13}C_{\text{DIC}},$
пробы			‰	ммоль/л	ммоль/дм ³	‰
на						
карте						
1	с. Новобобиево, р. Ояш – 2019				0,1	
	Г.	-118,0	-15,3	5,6		-10,8
	с. Новобобиево, р. Ояш – 2020				0,1	
	Г.	-112,5	-14,6	5,4		-11,7
	с. Новобибеево, ул. Набереж-				0,9	
	ная, скважина глубиной 7,5 м					
	– 2019 г.	-124,9	-16,6	3,4		-12,5
	с. Новобибеево, ул. Советская				0,3	
	36а – 2020 г.	-125,5	-17,1	6,9		-13,2
2	р. Иня – восток – 2019 г.	-114,2	-14,4	6,4	1,0	-7,0
	р. Иня – восток – 2020 г.	-117,9	-15,6	6,1	0,5	-9,4
	Станция Геодезическая, сква-					
	жина глубиной 80 м – 2019 г.	-135,1	-17,9	5,8	0,1	-11,4
	полигон СГУПС, скважина					
	глубиной 76 м – 2020 г.	-130,1	-17,5	6,4	0,3	-11,9
3	р. Иня – рядом с Обью – 2019	-125,8	16.0		0,4	10.5
	Г.		-10,9	3,1		-10,5
	Карьер Борок, техногенное	-122,4	15.0		1,0	11.2
4	озеро – 2019 г.		-13,9	6,3		-11,2
5	р. Обь – 2019 г.	-121,2	-15,8	2,3	0,3	-10,9
6	Яринский затон – 2019 г.	-120,0	-16,2	2,3	0,2	-11,4
	р. Тула (ул. Сибиряков Гвар-				0,8	
7	дейцев) – 2019 г.	-124,7	-16,2	6,3		-12,9
	р. Тула (ул. Петухова) – 2019				0,8	
8	Г.	-130,1	-16,9	6,9		-12,6
	р. Тула до Святого источника				0,5	12.5
9	— 2019 г.	-125,7	-16,3	5,8		-12,3
	с. Верх-Тула, Святой источник				0,1	14.0
10	— 2019 г.	-139,4	-18,9	8,5		-14,0

Анализ данных, приведенных в таблице 1, показывает, что для поверхностных вод северной и восточной части Новосибирской области характерен наиболее тяжелый изотопный состав кислорода и водорода. Водам рек Ояш ($\delta D = -118,0 \%$ и $\delta^{18}O = -15,3 \%$) и Иня ($\delta D = -114,2 \%$ и $\delta^{18}O = -14,4 \%$) за 2019 год соответствуют самые высокие относительные концентрации тяжелых изотопов D и ¹⁸O из всех исследованных (точки 1 и 2 на карте – рис. 1а). Очень близкие значения δD и $\delta^{18}O = -14,6 \%$ для р. Ояш; $\delta D = -117,9 \%$ и $\delta^{18}O = -15,6 \%$ для р. Иня), что указывает на довольно высокую стабильность этих показателей из года в год. Сравнение значений δD и $\delta^{18}O$ для вод указанных водоемов с данными для скважин, экс-

плуатирующих верхние водоносные горизонты этих же территорий, показывает существенное обогащение подземных вод легкими изотопами в последних: - 124,9 и -16,6 ‰ для скважины в с. Новобобиево (рядом с р. Ояш); -135,1 и -17,9 ‰ для скважины на полигоне СГУПС (рядом с р. Иня). По аналогии, данные для этих скважин за 2020 год имеют очень близкие значения: -125,5 и -17,1 ‰ соответственно для скважины в с. Новобобиево; -130,1 и -17,5 ‰ для скважины на полигоне СГУПС.

Различие изотопного состава поверхностных и подземных вод составляет от 7 до 21 ‰ по водороду (14 ‰ в среднем) и от 1,3 до 3,4 ‰ по кислороду (2,4 ‰ в среднем), что, вероятно, является следствием наложения эффектов испарения и транспирации поверхностных вод теплого времени года. Иными словами – смещением акцента питания подземных вод к осадкам холодного времени года. Поскольку существенных перепадов высот, способных оказать влияние через высотный градиент [1], в пределах изученного региона не наблюдается (разница высот относительно уровня моря для всех указанных точек не превышала 50 м), этот фактор влияния не учитывался.

Перемещение на юг от с. Новобобиево и на запад от восточной части р. Иня приводит к обогащению поверхностных вод легкими изотопами кислорода и водорода. Комплекс точек 3-5 на рис. 1а образует изотопную изолинию, имеющую узкий диапазон значений δD от -125,8 до -121,2 ‰ и $\delta^{18}O$ от -15,8 до -16,9 ‰, очень близких к относительным концентрациям изотопов D и ^{18}O для реки Обь в городской черте ($\delta D = -121,2$ ‰ и $\delta^{18}O = -15,8$ ‰).

Для характеристики изотопного состава кислорода и водорода поверхностных вод левого берега р. Обь на текущий момент представлены данные для Яринского затона, практически повторяющего изотопный состав p. Обь (δD = -120,0 ‰ и δ^{18} O = -16,1 ‰), а также несколько точек, отобранных при движении на юго-восток против течения притока Оби – р. Тула: на ул. Сибиряков-гвардейцев ($\delta D = -124,7$ ‰ и $\delta^{18}O = -16,2$ ‰. Точка 7 на карте) и ул. Петухова ($\delta D = -16,2$ ‰. 130,1 ‰ и δ^{18} O = -16,9 ‰. Точка 8 на карте). Тем не менее, здесь важно заметить, что чрезвычайное обогащение вод р. Тула в точке 8 (ул. Петухова) легкими изотопами кислорода и водорода отчасти обусловлено примесью изотопно-легких вод Святого Источника ($\delta D = -139,4 \%$ и $\delta^{18}O = -18,9 \%$. Точка 10), расположенного выше по течению относительно точки 8 и являющегося показателем подземных вод фонового состава юго-востока Новосибирской городской агломерации [18-21]. Поэтому более корректным будет проводить сравнение изотопного состава вод р. Тула в точке 7 с ее водами, отобранными до Святого источника $(\delta D = -125,7 \%$ и $\delta^{18}O = -16,3 \%$. Точка 9 на карте). Видно, что перемещение на юго-восток по карте Новосибирской области приводит к постепенному обеднению поверхностных вод тяжелыми изотопами кислорода и водорода.

Полученные результаты распределения изотопов кислорода и водорода в поверхностных водах крайне интересны, поскольку преобладающим направлением движения облаков, несущих атмосферные осадки, в Новосибирской области является с юго-запада на северо-восток, что должно приводить к диаметрально противоположной картине распределения изотопных концентраций. Возможно, это обусловлено малой выборкой данных на текущий момент и требует дополнительных исследований.

Изотопный состав углерода DIC изученных вод варьирует в довольно узком диапазоне (значения δ^{13} C изменяются от -14,0 до -7,0 ‰). При этом содержание водорастворенной формы углерода в водах превышает естественную его концентрацию в дождевой воде (10^{-2} ммоль/дм³ [22]) на 2-3 порядка, что указывает на явное участие почвенной углекислоты в формировании DIC изученных вод. Значения δ^{13} C являются характерными для смешанного карбонат-силикатного выветривания пород с участием биогенной углекислоты, высвобождаемой из останков растений типа C₃ [22].

Таким образом, в настоящей работе на текущий момент изучен изотопный состав кислорода, водорода вод, а также углерода DIC ограниченной выборки образцов, отобранных на территории НГА. Полученные результаты дают представление о региональном распределении изотопов в поверхностных водах региона. Показано закономерное различие в изотопном составе поверхностных и вод неглубоких подземных водоносных горизонтов, связанное с эффектами эвапотранспирации, а также постепенное обеднение всех изученных вод тяжелыми изотопами кислорода и водорода в юго-западном направлении. Изотопный состав углерода DIC в изученных водах является вполне ожидаемым и указывает на биогенное происхождение углекислоты и преобразование изотопного состава ее углерода в ходе карбонат-силикатного выветривания. Полученные результаты и сделанные выводы на текущий момент следует рассматривать как промежуточные ввиду неширокой выборки имеющихся данных.

Исследование выполнено при финансовой поддержке проекта ФНИ № 0331-2019-0025, РФФИ и Правительства Новосибирской области в рамках грантов № 19-45-540004, 20-45-543004 и 20-45-543005.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Ферронский В.И., Поляков В.А. Изотопия гидросферы Земли. – Москва: Научный мир, 2009. – 632 с.

2. Hoefs J. Stable isotope geochemistry. 8th edition. – Springer Textbooks in Earth Sciences, Geography and Environment. Springer International Publishing AG, part of Springer Nature, 2018. – 460 p.

3. Казанцева А.С. Исследование изотопного состава атмосферных осадков в г. Кунгуре в 2016-2018 гг. // Горное эхо. – 2019. – Т.74. – №1. – С.7-10.

4. Харитонова Н.А., Челнокова Г.А., Брагин И.В., Вах Е.А. Изотопный состав природных вод юга Дальнего Востока России // Тихоокеанская геология. – 2012. – Т. 31. - № 2. – С. 75-86.

5. Эйрих А.Н., Малыгина Н.С., Папина Т.С., Агбалян Е.В., Колесников Р.А., Красненко А.С. Изотопный состав атмосферных осадков на территории Ямало-Ненецкого автономного округа в зимний период 2016 г // Научный вестник Ямало-Ненецкого автономного округа. – 2017. – Т. 96. – №3. – С. 28-31.

6. Дублянский Ю.В., Климчук А.Б., Амеличев Г.Н., и др. Изотопный состав атмосферных осадков и карстовых источников северо-западного склона Крымских гор // Спелеология и карстология. – 2012. – №9. – С. 14-21.

7. Shemelina, O., Sanchaa, A., Faguet, A. Isotopic characteristics (δ O and δ d) of surface and groundwater as an additional tool for searching quality drinking water (Western part of Novosibirsk Region, Russia) // E3S Web of Conferences. – 2019. – V.98. – 12019.

8. Epstein S., Mayeda T. Variations of O18 content of waters from natural sources // Geochimica et Cosmochimica Acta. – 1953. – V. 4. – P. 213-224.

9. Nelson S.T. A simple, practical methodology for routine VSMOW/SLAP normalization of water samples analyzed by continuous flow methods // Rapid Commun. Mass Spectrom. – 2000. – V. 14. – P. 1044-1046.

10. Górka M., Sauer P.E., Lewicka-Szczebak D., Jedrysek M.-O. Carbon isotope signature of dissolved inorganic carbon (DIC) in precipitation and atmospheric CO2 // Environmental Pollution. -2011. - V. 159. - P. 294-301.

11. Evans, M. N., Selmer, K. J., Breeden III, B. T., Lopatka, A. S., and Plummer, R. E. Correction algorithm for online continuous flow $\delta 13C$ and $\delta 18O$ carbonate and cellulose stable isotope analyses // Geochem. Geophys. Geosyst. – 2016. – 17. – C. 3580–3588.

12. Kopec, B. G., Feng, X., Posmentier, E. S., & Sonder, L. J. Seasonal deuterium excess variations of precipitation at Summit, Greenland, and their climatological significance // Journal of Geophysical Research: Atmospheres. – 2019. – V. 124. – P. 72–91.

13. [Электронный pecypc]: https://nucleus.iaea.org/sites/ReferenceMaterials/Pages/Stable-Isotopes.aspx.

14. Craig H. Isotopic variations in meteoric waters // Science. - 1961. - V. 133. - P. 1702-1703.

15. [Электронный pecypc] https://nucleus.iaea.org/wiser/index.aspx.

16. Alçiçek H., Bülbül A., Yavuzer I., Alçiçek M. C. Origin and evolution of the thermal waters from the Pamukkale Geothermal Field (Denizli Basin, SW Anatolia, Turkey): Insights from hydrogeochemistry and geothermometry // Journal of Volcanology and Geothermal Research. – 2019. – V.372. – P. 48–70.

17. Gat J. R., Matsui E. Atmospheric water balance in the Amazon basin: An isotopic evapotranspiration model // Journal of Geophysical Research. – 1991. – V. 96. – № D7. – P. 13179-13188.

18. Новиков Д.А., Копылова Ю.Г., Вакуленко Л.Г., Сухорукова А.Ф., Пыряев А.Н., Максимова А.А., Дульцев Ф.Ф., Черных А.В. Изотопно-геохимические особенности проявления слаборадоновых вод "Инские источники" (юг Западной Сибири) // Известия Томского политехнического университета. Инжиниринг георесурсов. – 2021. – Т. 332. – № 3. – С. 135-145.

19. Новиков Д.А., Вакуленко Л.Г., Сухорукова А.Ф. Геохимия системы вода-порода проявления слаборадоновых вод "Инские источники" (юг Западной Сибири) // Геологическая эволюция взаимодействия воды с горными породами: Материалы четвертой Всероссийской научной конференции с международным участием, г. Улан-Удэ, 17-20 августа 2020 г. – 2020. – С. 88-92.

20. Новиков Д.А., Дульцев Ф.Ф., Сухорукова А.Ф., Максимова А.А., Черных А.В., Деркачев А.С. Радионуклиды в природных водах Новосибирской городской агломерации // Геологическая эволюция взаимодействия воды с горными породами: Материалы четвертой Всероссийской научной конференции с международным участием, г. Улан-Удэ, 17-20 августа 2020 г. – 2020. – С. 134-138.

21. Новиков Д.А., Пыряев А.Н., Черных А.В., Дульцев Ф.Ф., Сухорукова А.Ф. Первые результаты комплексных изотопно-гидрогеохимических исследований природных вод Новосибирской городской агломерации // ГЕО-Сибирь-2020. Недропользование. Горное дело. Направления и технологии поиска, разведки и разработки месторождений полезных ископаемых. Экономика. Геоэкология: Материалы XVI международной научной конференции, г. Новосибирск, 20-24 апреля 2020 г. – 2020. – С. 179-194.

22. Das A., Krishnaswami S., Bhattacharya S.K. Carbon isotope ratio of dissolved inorganic carbon (DIC) in rivers draining the Deccan Traps, India: Sources of DIC and their magnitudes // Earth and Planetary Science Letters. -2005. - V. 236. - P. 419-429.

REFERENCES

1. Ferronskij V.I., Polyakov V.A. Izotopiya gidrosfery Zemli. – Moskva: Nauchnyj mir, 2009. – 632 s.

2. Hoefs J. Stable isotope geochemistry. 8th edition. – Springer Textbooks in Earth Sciences, Geography and Environment. Springer International Publishing AG, part of Springer Nature, 2018. – 460 p.

3. Kazantseva A.S. Issledovanie isotopnogo sostava atmosfernyh osadkov v g. Kungure v 2016-2018 gg. // Gornoe Eho. – 2019. – V.74. – No.1. – P.7-10.

4. Kharitonova N.A., Chelnokov G.A., Bragin I.V., Vakh E.A. Isotope composition of natural waters of southern far east, Russia // Russian Journal of Pacific Geology. – 2012. – V. 31. - No 2. – P. 75-86.

5. Eyrih A.N., Malygina N.S., Papina T.S., Agbalyan E.V., Kolesnikov R.A., Krasnenko A.S. Isotope composition of atmospheric precipitation in the territiory of the Yamal-Nenets autonomous district in the winter period 2016 // Scientific Bulletin of the Yamal-Nenets Autonomous District. -2017. - No 3. - V. 96. - P. 28-31.

6. Dublyansky YV, Klimchouk AB, Amelichev GN, et al. Isotopic composition of atmospheric precipitation and karstic springs of the north-west slope of the Crimean Mountains // Speleology and Karstology. -2012. -V.9. -P. 14-21. (In Russ).

7. Shemelina, O., Sanchaa, A., Faguet, A. Isotopic characteristics (δ O and δ d) of surface and groundwater as an additional tool for searching quality drinking water (Western part of Novosibirsk Region, Russia) // E3S Web of Conferences. – 2019. – V.98. – 12019.

8. Epstein S., Mayeda T. Variations of O¹⁸ content of waters from natural sources // Geochimica et Cosmochimica Acta. – 1953. – V. 4. – P. 213-224.

9. Nelson S.T. A simple, practical methodology for routine VSMOW/SLAP normalization of water samples analyzed by continuous flow methods // Rapid Commun. Mass Spectrom. – 2000. – V. 14. – P. 1044-1046.

10. Górka M., Sauer P.E., Lewicka-Szczebak D., Jedrysek M.-O. Carbon isotope signature of dissolved inorganic carbon (DIC) in precipitation and atmospheric CO_2 // Environmental Pollution. – 2011. – V. 159. – P. 294-301.

11. Evans, M. N., Selmer, K. J., Breeden III, B. T., Lopatka, A. S., and Plummer, R. E. Correction algorithm for online continuous flow δ^{13} C and δ^{18} O carbonate and cellulose stable isotope analyses // Geochem. Geophys. Geosyst. – 2016. – 17. – C. 3580–3588.

12. Kopec, B. G., Feng, X., Posmentier, E. S., & Sonder, L. J. Seasonal deuterium excess variations of precipitation at Summit, Greenland, and their climatological significance // Journal of Geophysical Research: Atmospheres. – 2019. – V. 124. – P. 72–91.

13. [Jelektronnyj resurs] URL: https://nucleus.iaea.org/sites/ReferenceMaterials/Pages/Stable-Isotopes.aspx.

14. Craig H. Isotopic variations in meteoric waters // Science. - 1961. - V. 133. - P. 1702-1703.

15. [Jelektronnyj resurs] URL: https://nucleus.iaea.org/wiser/index.aspx.

16. Alçiçek H., Bülbül A., Yavuzer I., Alçiçek M. C. Origin and evolution of the thermal waters from the Pamukkale Geothermal Field (Denizli Basin, SW Anatolia, Turkey): Insights from hydrogeochemistry and geothermometry // Journal of Volcanology and Geothermal Research. – 2019. – V.372. – P. 48–70.

17. Gat J. R., Matsui E. Atmospheric water balance in the Amazon basin: An isotopic evapotranspiration model // Journal of Geophysical Research. – 1991. – V. 96. – №D7. – P. 13179-13188.

18. Novikov D.A., Kopylova YU.G., Vakulenko L.G., Suhorukova A.F., Pyryaev A.N., Maksimova A.A., Dul'cev F.F., CHernyh A.V. Izotopno-geohimicheskie osobennosti proyavleniya slaboradonovyh vod "Inskie istochniki" (yug Zapadnoj Sibiri) // Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. – 2021. – T. 332. – № 3. – S. 135-145. 19. Novikov D.A., Vakulenko L.G., Suhorukova A.F. Geohimiya sistemy voda-poroda proyavleniya slaboradonovyh vod "Inskie istochniki" (yug Zapadnoj Sibiri) // Geologicheskaya evolyuciya vzaimodejstviya vody s gornymi porodami: Materialy chetvertoj Vserossijskoj nauchnoj konferencii s mezhdunarodnym uchastiem, g. Ulan-Ude, 17-20 avgusta 2020 g. – 2020. – S. 88-92.

20. Novikov D.A., Dul'cev F.F., Suhorukova A.F., Maksimova A.A., CHernyh A.V., Derkachev A.S. Radionuklidy v prirodnyh vodah Novosibirskoj gorodskoj aglomeracii // Geologicheskaya evolyuciya vzaimodejstviya vody s gornymi porodami: Materialy chetvertoj Vserossijskoj nauchnoj konferencii s mezhdunarodnym uchastiem, g. Ulan-Ude, 17-20 avgusta 2020 g. – 2020. – S. 134-138.

21. Novikov D.A., Pyryaev A.N., CHernyh A.V., Dul'cev F.F., Suhorukova A.F. Pervye rezul'taty kompleksnyh izotopno-gidrogeohimicheskih issledovanij prirodnyh vod Novosibirskoj gorodskoj aglomeracii // GEO-Sibir'-2020. Nedropol'zovanie. Gornoe delo. Napravleniya i tekhnologii poiska, razvedki i razrabotki mestorozhdenij poleznyh iskopaemyh. Ekonomika. Geoekologiya: Materialy XVI mezhdunarodnoj nauchnoj konferencii, g. Novosibirsk, 20-24 aprelya 2020 g. – 2020. – S. 179-194.

22. Das A., Krishnaswami S., Bhattacharya S.K. Carbon isotope ratio of dissolved inorganic carbon (DIC) in rivers draining the Deccan Traps, India: Sources of DIC and their magnitudes // Earth and Planetary Science Letters. -2005. - V. 236. - P. 419-429.

© Д. А. Новиков, А. Н. Пыряев, Ф. Ф. Дульцев, А. В. Черных, А. Ф. Сухорукова, А. С. Деркачев, А. А. Максимова, 2021