МЕТОДИКА МОНИТОРИНГА СМЕЩЕНИЙ ЗДАНИЙ И СООРУЖЕНИЙ ПО ДАННЫМ КОСМИЧЕСКОЙ РАДИОЛОКАЦИОННОЙ СЪЕМКИ

Сухроб Джамшедович Муродов

Сибирский государственный университет геосистем и технологий, 630108, Россия, г. Новосибирск, ул. Плахотного, 10, магистрант кафедры фотограмметрии и дистанционного зондирования, тел. (999)468-29-19, e-mail: suhrob-1994bat@mail.ru

Александр Юрьевич Чермошенцев

Сибирский государственный университет геосистем и технологий, 630108, Россия, г. Новосибирск, ул. Плахотного, 10, кандидат технических наук, доцент кафедры фотограмметрии и дистанционного зондирования, тел. (383)361-08-66, e-mail: fdz2004@bk.ru

Статья посвящена мониторингу деформаций сооружений с использованием метода интерферометрии постоянных рассеивателей по данным со спутника Sentinel-1. Описана методика Persistant Scatterers Interferometry, используемая для обработки интерферометрических пар снимков в программных продуктах SNAP и StaMPS. В результате получены дифференциальные интерферограммы, характеризующие изменение высоты отдельных точек за определенный период времени.

Ключевые слова: деформации сооружений, радиолокационная съемка, постоянные рассеиватели, мониторинг.

METHODOLOGY FOR MONITORING DISPLACEMENTS OF BUILDINGS AND STRUCTURES USING SPACE RADAR SURVEY

Suhrob D. Murodov

Siberian State University of Geosystems and Technologies, 10, Plakhotnogo St., Novosibirsk, 630108, Graduate, Department of Photogrammetry and Remote Sensing, phone: (999)468-29-19, e-mail: suhrob-1994bat@mail.ru

Alexander Yu. Chermoshentsev

Siberian State University of Geosystems and Technologies, 10, Plakhotnogo St., Novosibirsk, 630108, Russia, Ph. D., Associate Professor, Department of Photogrammetry and Remote Sensing, phone: (383) 361-08-66, e-mail: fdz2004@bk.ru

The article is devoted to monitoring the deformation of structures using persistent scattereres interferometry according to the satellite Sentinel-1. The Persistant Scatterers Interferometry technique is described, which is used for processing interferometric pairs of images in SNAP and StaMPS software. As a result, differential interferograms characterizing the change in the height of individual points over a certain period of time are obtained.

Key words: displacement of buildings, radar survey, persistant scatterers monitoring.

Введение

Для мониторинга быстропротекающих геодинамических процессов, таких как оползни и тектонические подвижки, в последние годы активно применяются спутниковые радиолокационные снимки [1]. Среди методов особенно выделя-

ется Persistant Scatterers Interferometry (PSI) – это новая методика обработки радиолокационных данных, позволяющая измерять и отслеживать смещения и деформации точек земной поверхности, являющихся постоянными рассеивателями радиосигнала. В качестве таких точек, зачастую, выступают здания и искусственные сооружения [2].

Целью данной работы является реализация методики обработки и данных по методу PSI на примере снимков со спутников Sentinel-1. На радиолокационных спутниках Sentinel-1 применена новая технология сканирования Terrain Observation with Progressive Scans SAR (TOPSAR). По сравнению с предыдущими миссиями Европейского космического агентства, технология TOPSAR обеспечивает повышенную пропускную способность сбора данных [3], что приводит к увеличению потенциала мониторинга деформаций. Используя режим широкополосной интерферометрической съемки Interferometric Wide Swath, который является стандартным режимом съемки Sentinel-1, обеспечивается ширина полосы захвата 250 км. За счет этого достигается высокое временное разрешение: один спутник имеет 12-дневный цикл повторного посещения, в то время как с использованием двух спутников цикл становится 6-дневным. Это обстоятельство способствует снижению временной декорреляции данных и, как следствие, улучшению когерентности интерферометрических пар снимков. Немаловажным является доступность исходных данных, определяемая открытой политикой распространения в рамках программы Copernicus.

Методы и материалы

Методика обработки состоит из следующих основных этапов:

1) предварительная обработка. Из-за особенностей технологии TOPSAR данные Sentinel-1 нуждаются в дополнительной обработке. Это главным образом влияет на этап совмещения снимков, который из-за высокой скорости доплеровского сдвига, должен быть очень точным [4]. Предварительная обработка выполняется в пакетном режиме, затем следует объединение для формирования субполос интерферограмм и амплитудных изображений;

2) выбор точек, используемых в качестве постоянных рассеивателей Persistent Scatterer (PS). Здесь используется критерий дисперсии амплитуды точек PS, характеризующихся умеренным пространственным изменением фазы для обеспечения последующей правильной развертки фазы [5];

3) развертка пространственной двумерной фазы с использованием метода потока минимальной стоимости [6, 7] выполняется над несколькими интерферограммами. На этом этапе генерируется набор из развернутых фазовых изображений, которые упорядочены по времени в соответствии с датами обработанных изображений;

4) атмосферная фильтрация. Выполняется с использованием набора пространственно-временных фильтров [8];

5) определение скорости деформации и оценка точности. Скорость деформации и оценка точности выполняется по развернутым интерферограммам. До-

полнительно для учета теплового расширения может быть использована двухпараметрическая модель [9-11];

6) географическая привязка результатов PSI.

В данной работе методика обработки по методу PSI реализована с помощью программного пакета Stanford Method of Persistent Scatterer (StaMPS), интегрированной в программный продукт SNAP. В качестве исследуемой территории была выбрана область интереса с известными деформациями, расположенная в Мехико [12-14]. Для минимизации используемых ресурсов обработки были выбраны относительные орбиты спутника, обеспечивающие полный охват территории в пределах одной суб-полосы. В таблице приведены сводные характеристики данных.

Характеристики исходных снимков

Номер относи-	Число снимков	Дата начала	Дата окончания
тельной орбиты		съемки	съемки
143	17	15.11.2015	11.09.2016

Результаты

Весь рабочий процесс обработки разработан с использованием интерфейса SNAP Graph Builder и сохранен в виде нескольких файлов XML (рис. 1). Graph Builder позволяет пользователю собирать графики из списка доступных операторов и подключать узлы операторов к их источнику. Разделение рабочего процесса на отдельные файлы XML облегчает использование вычислительных ресурсов.

Рис. 1. Схема обработки в программе SNAP

Результатом является экспортированный набор данных, в формате, совместимом со StaMPS, упорядоченный в структуру папок. Процедура запускается с помощью сценария mt_prep_gamma, в ходе которого происходит обнаружение исходных точек, являющихся постоянными рассеивателями и извлечение соответствующих данных (фаза, высота и т. д.). Результатом являются дифференциальные интерферограммы в виде растровых файлов, которые могут быть экспортированы в виде файла KMZ для отображения в ГИС или веб-сервисах. На рис. 2 продемонстрирована модель, характеризующая изменение высот точек, которая была загружена в программу Google.Планета Земля.

Рис. 2. Результат экспорта в Google.Планета Земля

Заключение

По результатам проведенных исследований были определены параметры и основные этапы методики обработки радиолокационных снимков со спутника Sentinel-1 с использованием постоянных рассеивателей радиосигнала.

По результатам можно сделать следующие выводы:

– значительная часть процесса обработки практически автоматизирована с помощью SNAP Graph Builder и программного пакета StaMPS, для подбора каждой интерферометрической пары требуется действие оператора;

– несмотря на пространственную неравномерность размещения постоянных рассеивателей радиолокационного сигнала на исследуемой территории, плотность рассеивателей достаточно велика и превышает любую возможную плотность контрольных точек (реперов) при наземных геодезических наблюдениях;

- частота съемок достаточна, чтобы определить не только итоговые смещения, но и проанализировать их динамику за полгода;

– некоторые участки территории при съемке только на восходящем витке орбиты остаются засвеченными вследствие эффекта переналожения. Эту проблему можно решить, используя съемку сразу с двух витков орбиты.

Технология радиолокационной интерферометрии постоянных рассеивателей является эффективным дополнением к традиционным наблюдениям за смещениями инструментальными методами.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Деформации зданий и сооружений и порядок их выявления. Молодой ученый [Электронный ресурс] / отдел «Майкопский гос. технологический ун-т. – М., 2018. – Режим доступа https://moluch.ru/archive/134/37529.

2. Космический радарный мониторинг смещений земной поверхности и сооружений на Жезказганском месторождении меди / В. А. Мансуров [и др.] // Геоматика. – 2012. – № 1. – С. 73 – 77.

3. Кантемиров, Ю. И. Обзор современных радарных данных ДЗЗ // Геоматика. – 2013. – № 2. – С. 69 – 72.

4. Torres R., Snoeij P., Geudtner D. GMES Sentinel-1 mission. Remote Sensing of Environment, 120, 9–24. doi:10.1016/j.rse.2011.05.028.

5. Prats-Iraola P., Scheiber R., Marotti L. TOPS interferometry with TerraSAR-X. IEEE Transactions on Geoscience and Remote Sensing, 50(8), 3179–3188. doi:10.1109/TGRS.2011.2178247.

6. Devanthery N., Crosetto M., Monserrat O. An approach to Persistent Scatterer Interferometry. Remote Sensing, 6, 6662–6679. doi:10.3390/rs6076662.

7. Costantini M. A novel phase unwrapping method based on network programming. IEEE Transactions on Geoscience and Remote Sensing, 36, 813–821. doi:10.1109/36.673674.

8. Costantini M., Farina A., Zirilli F. A fast phase unwrapping algorithm for SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 37, 452–460. doi:10.1109/36.739085.

9. Ferretti A., Prati C., & Rocca F. Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8–20. doi:10.1109/36.898661.

10. Monserrat O., Crosetto M., Cuevas M. The thermal expansion component of Persistent Scatterer Interferometry observations. IEEE Geoscience and Remote Sensing Letters, 8, 864–868. doi:10.1109/LGRS.2011.2119463.

11. Osmanoglu T. H., Dixon S. Mexico City subsidence observed with persistent scatterer In-SAR," International Journal of Applied Earth Observation and Geoinformation, 13(1), pp. 1-12, 2011.

12. Devanthéry N., Crosetto M. Data analysis tools for persistent scatterer interferometry based on Sentinel-1 data // Procedia Computer Science, Volume 100, 2016, Pages 1121-1126. https://doi.org/10.1080/22797254.2018.1554981

13. Devanthéry N., Crosetto M. Deformation Monitoring Using Persistent Scatterer Interferometry and Sentinel-1 SAR Data https://doi.org/10.1016/j.procs.2016.09.263

14. Blasco J., Foumelis M. Measuring Urban Subsidence in the Rom Metropolitan Area (Italy) with Sentinel-1 SNAP-StaMPS Persistent Scatterer Interferometry. Remote Sens. 2019, 11, 129; doi:10.3390/rs11020129

© С. Д. Муродов, А. Ю. Чермошенцев, 2020