DOI: 10.33764/2618-981X-2020-2-52-56

СПОСОБ УМЕНЬШЕНИЯ ПРОТИВОДАВЛЕНИЯ В ПЕРЕДНЕЙ КАМЕРЕ УДАРНЫХ МАШИН С ГИДРАВЛИЧЕСКОЙ КАМЕРОЙ ОБРАТНОГО ХОДА

Борис Борисович Данилов

Институт горного дела им. Н. А. Чинакала СО РАН, 630091, Россия, г. Новосибирск, Красный пр., 54, доктор технических наук, и.о. зав. отдела горной и строительной геотехники, тел. (383)205-30-30, доб. 119, e-mail: bbdanilov@mail.ru

Александр Аркадьевич Речкин

Институт горного дела им. Н. А. Чинакала СО РАН, 630091, Россия, г. Новосибирск, Красный пр., 54, научный сотрудник отдела горной и строительной геотехники, тел. (383)205-30-30, доб. 157, e-mail: lexxer68@gmail.com

На имитационной модели показано возникновение значительного противодавления движению бойка при рабочем ходе в ударных машинах с гидравлической камерой обратного хода. Предложено устройство (пружинный редукционный клапан), позволяющее снизить давление сопротивления движению бойка. Получены сравнительные энергетические характеристики ударной машины в которой применяется такое устройство и машины со стандартным сливом при одинаковых технических параметрах обеих.

Ключевые слова: гидроударные машины, ударная мощность, имитационная модель, противодавление, энергия удара.

METHOD TO REDUCE COUNTER PRESSURE IN FRONT CHAMBER OF HUMMERS WITH A HYDRAULIC BACK STROKE CHAMBER

Boris B. Danilov

Chinakal Institute of Mining SB RAS, 54, Krasny Prospect St., Novosibirsk, 630091, Russia, D. Sc., Head of Mining and Construction Geo Equipment Department, phone: (383)205-30-30, extension 119, e-mail: bbdanilov@mail.ru

Aleksandr A. Rechkin

Chinakal Institute of Mining SB RAS, 54, Krasny Prospect St., Novosibirsk, 630091, Russia, Researcher of Mining and Construction Geo Equipment Department, phone: (383)205-30-30, extension 157, E-mail: lexxer68@gmail.com

Using the simulation model, the occurrence of significant counter pressure to striker movement during the power stroke in hummers with a hydraulic back stroke chamber is shown. A device (spring pressure reducing valve) is proposed, which allows decreasing the pressure of resistance to the striker movement. The comparative energy characteristics of a hummer with such a device and machine with standard discharge are obtained, technical parameters of both machines are similar.

Key words: hydraulic hummers, impact power, simulation model, counter pressure, impact energy.

При проектировании ударных машин с гидравлической камерой обратного хода, особенно при значительных расходах энергоносителя и сечениях

камер, возникает необходимость быстрого слива жидкости из предударного объема [1-6]. Чем больше сечение камеры и предударная скорость бойка, тем более высокая скорость слива необходима, чтобы предотвратить торможение бойка. За единицу времени необходимо вытеснить объем v·S, где v-скорость бойка, а S-площадь сечения камеры. С другой стороны, скорость слива ограничена площадью сечения сливной магистрали, которое всегда значительно меньше площади сечения камеры. Так, при моделировании ударной машины с пневмопружиной и гидравлической камерой обратного хода (рис. 1) было установлено, что давление в гидрокамере во время прямого хода (при сливе) может достигать 2 МПа. Это неизбежно приводит к повышенному торможению бойка при рабочем ходе и снижению предударной скорости. Так, например, моделирование машины с массой ударника 50 кг и рабочим ходом 60мм показало, что предударная скорость составит 3,74 м/с (рис. 2).

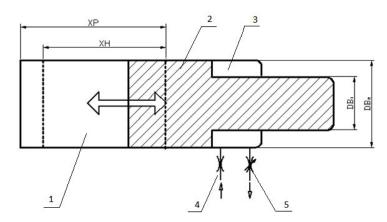


Рис. 1. Принципиальная схема ударной машины с пневмопружиной и гидравлической камерой обратного хода:

1- пневматическая камера прямого хода, 2 – боек, 3- гидравлическая камера обратного хода, 4- напорный дроссель, 5- сливной клапан.

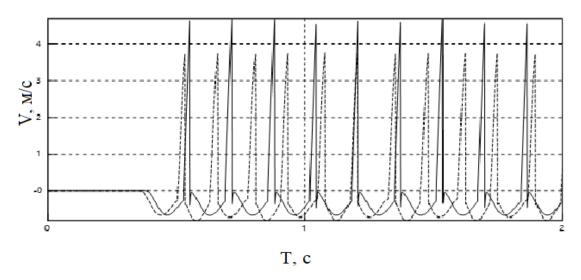


Рис. 2. График скоростей бойка ударной машины без редукционного клапана (---) и с редукционным клапаном $(___)$

Для снижения давления в гидрокамере и исследования его влияния на предударную скорость было предложено ввести в расчетную схему пружинный редукционный клапан (РК) для дополнительного слива жидкости во время прямого хода бойка.

Клапан (выделен прерывистой линией на рис. 3) работает следующим образом. Во время обратного хода гидрораспределитель 8 находится в положении "1", дросселя 14 и 15 закрыты, жидкость нагнетается в камеру 6 и поступает в пространство под поршнем 11. Под действием давления жидкости поршень поднимается вверх, сжимая пружину 13. Жидкость из пространства над поршнем вытесняется через обратный клапан 16. После взвода бойка в исходное положение гидрораспределитель с помощью схемы управления 9 переключается в положение слива "0", открываются дросселя 14 и 15. Давление под поршнем 11 падает, под действием пружины поршень принудительно сливает жидкость из гидрокамеры через дросселя 14 и 15 и обратный клапан 16. При этом оказалось, что при небольшом объеме камер редукционного клапана действие его достаточно эффективно.

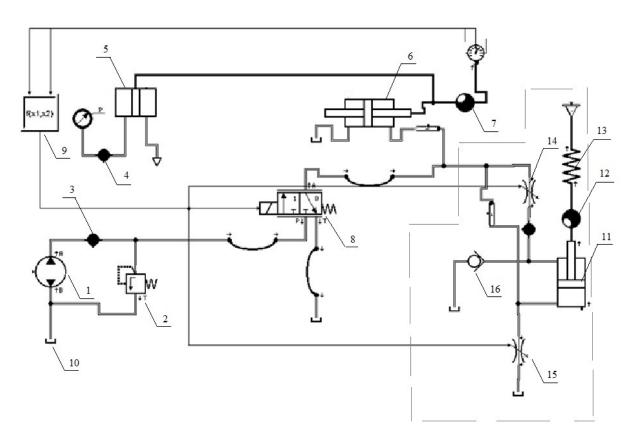


Рис. 3. Расчетная схема машины с пневмопружиной и гидравлической камерой обратного хода с редукционным клапаном:

1-насос, 2-предохранительный клапан, 3-объем жидкости, 4-объем воздуха, 5-пневмокамера прямого хода, 6-гидрокамера обратного хода, 7- масса бойка, 8-гидрораспределитель, 9-схема управления, 10-слив, 11-поршень редукционного клапана, 12-масса поршня, 13-пружина, 14,15-переменные дроссели, 16-обратный клапан

Численный эксперимент показал, что при тех же параметрах (диаметр бойка DB_2 , расход гидронасоса Q, исходное давление в пневматической камере P_0 , рабочий ход бойка XH, максимальный ход пневмокамеры XP, диаметр штока DB_1 и т.д.), предударная скорость бойка в схеме с редукционным клапаном увеличилась до 4,54 м/с (рис. 2), при этом относительное давление в гидрокамере во время прямого хода снижается практически до 0 (рис. 4). Сравнительные результаты приведены в таблице. Оценивались предударная скорость бойка v, частота ударов в секунду f, энергия удара $E = mv^2/2$, ударная мощность v=v=v=v=v0.

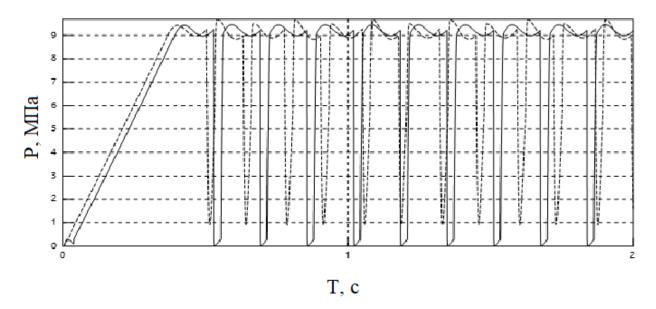


Рис. 4. Давление в гидравлической камере ударной машины без редукционного клапана (- - -) и с редукционным клапаном (_____)

Сравнительные механические характеристики ударной машины

Вариант	$Q, M^3/c$	P ₀ , МПа	ХН, м	ХР, м	DВ ₁ , м	f, Гц	v, m/c	Е, Дж	N, Дж/с
Без РК	0,0005	1,0	0,06	0,07	0,106	7,1	3,74	349,69	2482,80
С РК	0,0005	1,0	0,06	0,07	0,106	6,25	4,54	515,29	3220,56

Таким образом, с помощью имитационного моделирования показано, что в ударных машинах с гидравлической камерой обратного хода во время прямого хода возникает давление, препятствующие развитию бойком максимальной предударной скорости, и снижающее энергетические характеристики машины. Причина этого состоит в сложности конструктивно обеспечить слив большого количества жидкости за короткое время. В качестве варианта решения этой задачи предложена конструкция дополнительного пружинно-поршневого сливного клапана. На имитационной модели одного из вариантов ударной машины показано, что применение такого клапана, предназначенного для дополнительного слива жидкости во время рабочего хода, может дать прирост энергии уда-

ра до 47% и ударной мощности до 29% по сравнению с такой же машиной без дополнительного клапана.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Данилов Б.Б., Речкин А.А. Обоснование принципиальной схемы и определение энергетических и конструктивных параметров гидромолота объемного типа для проходки скважин в грунте методом виброударного продавливания: Фундаментальные и прикладные вопросы горных наук. 2018. Т. 5. № 2. с. 234-237
- 2. Архипенко, А. П., Федулов А.И. Гидравлические ударные машины. Новосибирск: Ин-т горного дела СО АН СССР, 1991. 106 с.
- 3. Ушаков, Л. С., Котылев Ю.Е., Кравченко В.А. Гидравлические машины ударного действия. М.: Машиностроение, 2000.-415 с.
- 4. Городилов Л. В. Разработка основ теории гидроударных систем объемного типа для исполнительных органов горных и строительных машин: дис. докт. техн. наук. Новосибирск, 2010. 303с.
- 5. Галдин, Н. С. Многоцелевые гидроударные рабочие органы дорожно-строительных машин. Омск : Изд-во СибАДИ, 2005. 223 с.
- 6. Галдин Н. С., Бедрина Е. А. Ковши активного действия на основе гидроударников для экскаваторов: Учеб. пособие /М-во образования Рос. Федерации. Сиб. гос. автомоб.-дорож. акад. Омск: Изд-во СибАДИ. 2003

© Б. Б. Данилов, А. А. Речкин, 2020