МОДЕЛИРОВАНИЕ ПЛАЗМОННОГО ОДИНОЧНОГО ГРАФЕНОВОГО ОТРАЖАТЕЛЬНОГО МОДУЛЯ ТЕРАГЕРЦОВОГО ДИАПАЗОНА

Александр Григорьевич Черевко

Сибирский государственный университет телекоммуникации и информатики, 630106, Россия, г. Новосибирск, ул. Кирова, 86, кандидат физико-математических наук, доцент, зав. кафедрой физики, e-mail: cherevko@mail.ru

Юрий Вячеславович Моргачев

Сибирский государственный университет телекоммуникации и информатики, 630106, Россия, г. Новосибирск, ул. Кирова, 86, инженер, e-mail: morgachev.yury@gmail.com

В статье представлены результаты моделирования плазмонного одиночного графенового отражательного модуля, работающего на частоте 1,35 ТГц. Рассмотрены зависимости характеристик плазмонного одиночного графенового отражательного модуля от изменения различных параметров графена (температура, химический потенциал и время релаксации).

Ключевые слова: ТГц, терагерцовый, графен, антенна, отражательная антенная решетка, плазмон.

TERAHERTZ GRAPHENE PLASMON SINGLE REFLECTARRAY MODULE MODELING

Alexander G. Cherevko

Siberian State University of Telecommunications and Informatics, 86, Kirova St., Novosibirsk, 630106, Russia, Ph. D., Associate Professor, Head of Physics Department, e-mail: cherevko@mail.ru

Yury V. Morgachev

Siberian State University of Telecommunications and Informatics, 86, Kirova St., Novosibirsk, 630106, Russia, Engineer, e-mail: morgachev.yury@gmail.com

Simulation of a plasmon single graphene reflectarray module operating at a frequency of 1.35 THz is presented. The dependences of the characteristics of a plasmon single graphene reflectarray module on changes in various parameters of graphene (temperature, chemical potential and relaxation time) are considered.

Key words: THz, terahertz, graphene, antenna, reflectarray, plasmon.

Введение

Приёмники и излучатели ТГц диапазона (300 ГГц – 10 ТГц) нашли широкое применение в таких областях как получение изображений скрытых предметов под одеждой [1], радиоастрономия [2], медицина [3], передача данных [4]. Из-за высокого атмосферного поглощения ТГц излучения, одним из требований к приемо-передающим устройствам является наличие высоконаправленной антенны [5]. Для многих приложений существенную роль играют габариты антенны. Отражательные антенные решетки (ОАР) позволяют выполнить эти требования. ОАР реализуют достоинства зеркальных антенн и фазированных антенных решеток, поэтому их применение в ТГц области изучается достаточно активно [6-8]. Они обладают низкими потерями, планарным дизайном, низким уровнем кросс поляризации, простотой изготовления и высокой эффективностью. ОАР состоит из набора отражательных модулей (рис. 1), которые вводят фазовый сдвиг при отражении падающей волны. Облучение же производится отдельно расположенным источником, по аналогии с зеркальной антенной, например, рупорной антенной. В зависимости от распределения фазы на поверхности ОАР, возможно изменять форму диаграммы направленности.

Рис. 1. 48 элементная ОАР с первичным облучателем

Одним из перспективных материалов, применимых при конструировании ТГц ОАР является графен. Графен имеет высокую подвижность носителей заряда и чувствительность к внешнему электрическому полю, из-за чего активно применяется в электронике. При рассмотрении пассивных устройств, например, антенн, интерес к графену основывается на его комплексной поверхностной проводимости, которая позволяет распространяться медленным плазмонным модам. Использование данного эффекта позволяет уменьшать размеры ОАР на 2 порядка [9].

Целью данной работы является исследование зависимости характеристик плазмонного одиночного графенового отражательного модуля от изменения различных параметров графена, таких как химический потенциал, температура и время релаксации.

Методы и материалы

Для достижения поставленной цели разработана компьютерная плазмонного графенового одиночного отражательного модуля (ПГООМ) для чего использовался программный пакет CST Studio. Посредством решателя в частотной области получены характеристики ПГООМ. В качестве граничных условий использовались граничные условия Флоке. С обратной стороны ПГООМ находится заземляющая пластина, поэтому устанавливается соответствующие граничные условия (Et = 0). Данная конфигурация позволяет учесть межэлементную связь и варьировать углы падения волны.

Дизайн плазмонного графенового одиночного отражательного модуля представлен на рис. 2. Графеновый полосок представляет из себя квадрат, со сторонами длиной ~ $\lambda_0/24$.

а) вид сверху

б) вид сбоку

Рис. 2. Дизайн ПГООМ

В качестве материала подложки использовался кварц (бирюзовый цвет) (диэлектрическая проницаемость 3,75 и тангенс угла потерь 0,0184 в ТГц диапазоне) толщиной h = 24 мкм. Длина и ширина ПГООМ составляет 15 мкм. Изза толщины слоя графена в 1 атом, данный слой может быть представлен как бесконечно тонкая поверхность с комплексной проводимостью. Данная проводимость может быть получена с помощью формулы Кубо. В качестве параметров использовались: температура 293 К, время релаксации 1 пс (измерено в [10]), химический потенциал 0,19 эВ, по аналогии с [11].

Результаты и их обсуждение

Полученная комплексная проводимость представлена на рис. 3.

Рабочая частота ПГООМ равна 1,35 ТГц, лежит в окне пропускания атмосферы [12] и используется в спектроскопии. Полученный размер полоска после оптимизации составляет 9,2 мкм.

Как видно из рис. 4, существенное влияние на амплитуду и фазу коэффициента отражения ПГООМ оказывает изменения химического потенциала графена.

Можно заметить, что резонансная кривая (рис. 4, слева) на 0,2 эВ не сохраняется при изменении химического потенциала. На рис. 4 (справа) можно заметить, что фазу отраженного сигнала можно варьировать с помощью изменения постоянного внешнего электрического поля, что подтверждает результаты [13].

Рис. 3. Комплексная проводимость графеная, в диапазоне от 1 до 2 ТГц

Рис. 4 Влияние химического потенциала на коэффициент отражения ПГООМ, слева: амплитудно-частотная характеристика, справа: фазо-частотная характеристика

Влияние изменения времени релаксации на амплитуду и фазу коэффициента отражения представлено на рис. 5.

Рис. 5. Влияние времени релаксации электрона на коэффициент отражения ПГООМ. Слева: АЧХ, справа: ФЧХ

Получено, что изменение времени релаксации плавно меняет резонансный характер АЧХ (рис. 5 слева), в отличии от химического потенциала (рис. 4, слева). Устойчивая фаза отраженного сигнала устанавливается после значений времени релаксации в 0,5 пс (рис. 5, справа).

Отражательные антенные решетки должны работать в различных температурных режимах, поэтому целесообразно рассмотреть влияние температуры на коэффициент отражения ПГООМ (рис. 6).

Рис. 6. Влияние температуры на коэффициент отражения ПГООМ. Слева: АЧХ, справа: ФЧХ

Как видно из рис. 6, изменение температурного режима не влияет на результирующие параметры ОАР (точки, соответствующие разным температурам, ложатся на одну и туже) кривую.

Заключение

Результаты моделирования показали: что на плазмонную графеновую отражательную антенную решетку серьезное влияние оказывает внешнее электрическое поле, которое изменяет химический потенциал графена, т.е. необходима стабилизация ОАР по этому параметру. В тоже время ОАР индифферентна к изменению ее температурного режима.

Время релаксации электронов в графене зависит напрямую от выбранной технологии изготовления графеновых полосков, что так же должно быть принято во внимания при моделировании ПГООМ и соответственно ОАР.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Kemp M.C. и др. Security applications of terahertz technology // Terahertz for Military and Security Applications. 2003. C. 44–52.

2. Shi S. Development of superconducting mixers for THz astronomy // Science China Information Sciences. 2011. T. 55. № 1. C. 120–126.

3. Sun Q. и др. Recent advances in terahertz technology for biomedical applications // Quantitative Imaging in Medicine and Surgery. 2017. Т. 7. № 3. С. 345–355. 4. Akyildiz I.F., Jornet J.M., Han C. Terahertz band: Next frontier for wireless communications // Physical Communication. 2014. T. 12. C. 16–32.

5. Tamosiunaite M. и др. Atmospheric Attenuation of the Terahertz Wireless Networks // Broadband Communications Networks - Recent Advances and Lessons from Practice. 2018. C. 143–157.

6. Chang Z. и др. A Reconfigurable Graphene Reflectarray for Generation of Vortex THz Waves // IEEE Antennas and Wireless Propagation Letters. 2016. Т. 15. С. 1537–1540.

7. Frequencies: Design, Fabrication, and Measurement // IEEE Transactions on Terahertz Science and Technology. 2016. T. 6. № 2. C. 268–277.

8. Miao Z.-W. и др. A 400-GHz High-Gain Quartz-Based Single Layered Folded Reflectarray Hasani H. и др. Tri-Band, Polarization-Independent Reflectarray at Terahertz

Antenna for Terahertz Applications // IEEE Transactions on Terahertz Science and Technology. 2019. T. 9. № 1. C. 78–88.

9. Choudhury S.M. и др. Material platforms for optical metasurfaces // Nanophotonics. 2018. T. 7. № 6. C. 959–987.

10. Mayorov A.S. и др. Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature // Nano Letters. 2011. Т. 11. № 6. С. 2396–2399.

11. Lee H., Paeng K., Kim I.S. A review of doping modulation in graphene // Synthetic Metals. 2018. T. 244. C. 36–47.

12. Slocum D.M. и др. Atmospheric absorption of terahertz radiation and water vapor continuum effects // Journal of Quantitative Spectroscopy and Radiative Transfer. 2013. T. 127. C. 49–63.

13. Carrasco E., Tamagnone M., Perruisseau-Carrier J. Tunable graphene reflective cells for THz reflectarrays and generalized law of reflection // Applied Physics Letters. 2013. T. 102. № 10. C. 104103.

© А. Г. Черевко, Ю. В. Моргачев, 2019