МИКРОСКАНЕР НА БАЗЕ СИНХРОННОГО ДВИГАТЕЛЯ С ВНЕШНИМ РОТОРОМ ДЛЯ ТЕПЛОВИЗИОННЫХ СИСТЕМ И МЕТОДИКА ЕГО НАСТРОЙКИ

Игорь Иванович Кремис

Новосибирский филиал Института физики полупроводников им. А. В. Ржанова СО РАН «Конструкторско-технологический институт прикладной микроэлектроники», 630090, Россия, г. Новосибирск, пр. Академика Лаврентьева, 2/1, кандидат технических наук, начальник отдела, тел. (383)316-57-26, e-mail: igor21728@ngs.ru

Роман Александрович Гладков

Новосибирский филиал Института физики полупроводников им. А. В. Ржанова СО РАН «Конструкторско-технологический институт прикладной микроэлектроники», 630090, Россия, г. Новосибирск, пр. Академика Лаврентьева, 2/1, младший научный сотрудник, тел. (383)316-57-26, e-mail: roman.gl-2005@yandex.ru

Представлены результаты разработки устройств микросканирования для тепловизоров третьего поколения на основедвигателя с внешним ротором. Компонент, смещающий изображение сцены, выполнен из германиевой плоскопараллельной пластины. Выстроен математический аппарат для юстировки прибора.

Ключевые слова: микросканер, пиксель, матричное фотоприемное устройство.

MICROSCANNER ON THE BASIS OF THE SYNCHRONOUS MOTOR WITH AN EXTERNAL ROTOR FOR THERMAL IMAGING SYSTEMS AND THE TECHNIQUE OF ITS TUNING

Igor' I. Kremis

Novosibirsk Branch of the Rzhanov Institute of Semiconductor Physics SB RAS «Technological Design Institute of Applied Microelectronics», 2/1, Academician Lavrentyev Prospect St., Novosibirsk, 630090, Russia, Ph. D., Head of Department, phone: (383)316-57-26, e-mail: ig-or21728@ngs.ru

Roman A. Gladkov

Novosibirsk Branch of the Rzhanov Institute of Semiconductor Physics SB RAS «Technological Design Institute of Applied Microelectronics», 2/1, Academician Lavrentyev Prospect St., Novosibirsk, 630090, Russia, Junior Researcher, phone: (383)316-57-26, e-mail: roman.gl-2005@yandex.ru

The results of the development of microscanning devices for third-generation thermal imagers based on an external rotor engine are presented. The component that displaces the image of the scene is made of a germanium plane-parallel plate. Method for the device adjustment is presented.

Key words: microscanner, pixel, matrix photodetector.

Введение

Кадры, получаемые тепловизионным приемником с низким разрешением матрицы, имеют заметную дискретную структуру. Требования потребителей могут опережать технологические возможности производства либо изготовле-

ние необходимых матриц сопряжено с большими расходами, что приводит к удорожанию конечного продукта в несколько раз. Существует метод, который позволяет без смены фотоприемного устройства (ФПУ) получить изображение с увеличенным разрешением. Этот метод называется микросканированием [1–4]. Метод реализуется с помощью электромеханического компонента, позволяющего сместить ход лучей, падающих на матрицу. В распоряжении наблюдателя появляются как прямые кадры, так и смещенные на половину элемента в двух взаимно перпендикулярныхнаправлениях. Так, например, изображение на мониторе, полученное с использованием микросканера (ФПУ с разрешением 320×256 пикселей; размер пиксела 30 мкм), будет иметь ту же детализацию, что и изображение, полученное матрицей 640×512 с размером пиксела 15 мкм.

Устройство микросканирования

В настоящее время разработаны и испытаны микросканеры с разными принципами действия на базе: пьезоэлементов (со смещением оптического компонента); электромагнитного привода со смещением того же оптического компонента; с электромагнитным приводом, изменяющим наклон плоскопараллельной пластины. Тот или иной способ смещения хода лучей имеет как преимущества, так и недостатки. Так, например, пьезопривод позволяет получить частоту смены кадров 50 Гц. Однако достигаемое при этом смещение проекции оказалось недостаточным для обхода дефектов матрицы в виде кластеров.

Микросканеры, построенные на вышеперечисленных принципах смещения проекции изображения, имеют ряд общих недостатков: высокая стоимость изделия, связанная с использованием дорогостоящих импортных элементов; трудоемкость в изготовлении компонентов системы; отсутствие гибкого и оперативного способа изменения хода лучей. Более того, надежность работыприбора остаетсядостаточно низкой, что неприемлемо при использовании его в изделиях специального назначения.

В Филиале ИФП СО РАН «КТИПМ» создано устройство микросканирования (УМС), которое в отличие от известных, имеет невысокую себестоимость; допускает перемещение проекции изображения в диапазоне от 15 мкм (1/2 от размера пиксела матрицы ФПУ) до 150 мкм и переключение поля от 50 Гц до 200 Гц (максимальная кадровая частота фотоприемника [1, 2]); повышенную надежность и простоту методов контроля функционирования микросканера, позволяющих осуществлять его юстировку, как на этапе производства, так и на этапе использования в составе тепловизионных комплексов.

Внешний вид устройства микросканирования приведен на рис. 1. Оно состоит из следующих элементов: ротора синхронного двигателя *1*, плоскопараллельной пластинки *2* и элемента для юстировки *3*. Опытный образец электродвигателя (за исключением магнитопровода и обмоток) напечатан на 3D-принтере. После окончательной сборки устройство продемонстрировало свою работоспособность. Вид в разрезе представлен на рис. 2. Плоскопараллельная пластинка толщиной 2 мм находится в полости синхронного двигателя с внешним ротором. Она наклонена под углом к условной плоскости, которая, в свою очередь, перпендикулярна направлению волны ИК-излучения. Использование синхронного двигателя для вращения пластинки позволяет жестко связать моменты времени формирования кадра матрицей ФПУ (всего их – четыре) с углом поворота плоскости, относительно которой наклонена пластинка.

Рис. 1. Устройство микросканирования

Рис. 2. Вид устройства в разрезе

Структурная схема управления синхронным двигателем показана на рис. 3. Воздействие $x_3(t)$ на синхронный бесколлекторный двигатель задается многофазным тактовым генератором. Для регистрации случайного срыва синхронизации между внешним ротором и задающим воздействием $x_3(t)$, определяющим частоту вращения магнитного поля в статоре, вводится обратная связь с использованием датчика Холла. Она позволяет также осуществлять привязку требуемого угла поворота пластинки с моментом регистрации изображения.

Рис. 3. Структурная схема управления синхронным двигателем

Методика настройки микросканера

Для юстировки микросканера используется оптическая схема, представленная на рис. 4, где l – матрица фотоприемника, 2 – окно фотоприемника, 3 – германиевая пластинка с юстировочным винтом, 4 – экран и 5 – лазер. Луч лазера направлен параллельно главной оптической оси: OB – падающий луч, OA – отраженный луч, $AB = l_l$ – расстояние между падающим и отраженным лучами лазера, bl и b2 – расстояния от матрицы до входного окна фотоприемника и от этого окна до пластинки соответственно. Расстояние между точками O и B обозначим как l_2 .

Использование юстировочного винта 3 на рис. 1 позволяет получить требуемый наклон плоскопараллельной пластинки. При этом возникает вопрос контроля величины смещения проекции на заданную величину в ИК-диапазоне спектра излучения, невидимом глазу человека. Как известно, германиевая пластинка обладает хорошей отражающей способностью. Угол наклона ее связан с параметрами l_1 и l_2 следующим образом:

$$\alpha = \frac{1}{2} \arctan\left(\frac{l_1}{l_2}\right). \tag{1}$$

Цель методики – определить значение смещения изображения на матрице. На рис. 5. показана фотография сканера с экраном, на котором в вершинах квадрата показаны четыре светлых пятна, соответствующие положениям отраженного от пластинки лазерного излучения. Включение лазера синхронизировалось с углом поворота ротора микросканера, что позволило на экране построить квадрат и выполнить необходимые измерения.

Рис. 4. Оптическая схема настройки микросканера Рис. 5. Сканер с экраном

Методика основана на переводе измерений из области инфракрасного диапазона спектра в видимый диапазон: результаты измерения угла наклона пластинки в видимом диапазоне используются в дальнейших вычислениях с использованием законов геометрической оптики [5]. Отметим, что в общем случае плоскопараллельная пластинка имеет паразитную клиновидность вследствие несовершенства технологии ее изготовления. Угол клина необходимо учитывать не в виде погрешности, а в качестве самостоятельного параметра.

Обратимся к оптической схеме, представленной на рис. 6. Здесь показана пластинка (показатель преломления n_2) с плоскими поверхностями G и F с углом φ_1 между ними. Луч лазера из среды с показателем преломления n_1 (воздух) падает на границу раздела воздух – пластинка G под углом α_1 к нормали N_1 в точке A. Далее луч, преломляясь под углом β_1 к нормали N_1 , проходит путь AB. Преломленный луч AB падает на границу раздела пластинка–воздух F под углом α_2 к нормали N_2 в точке B. И наконец, этот луч, преломляясь на границе раздела F под углом β_2 к нормали N_2 , попадает на матрицу в точке W. Плоскость P – мнимая поверхность идеальной плоскопараллельной пластинки. Точкой Zотмечено место падения луча для случая совпадения плоскостей F и P. θ – угол отклонения луча от направления в идеальной плоскопараллельной пластинки.

Рис. 6. Ход лучей при прохождении через пластинку

Для определения смещения необходимо иметь в распоряжении следующие параметры: толщина пластинки 3 (рис. 4), расстояние b = b1 + b2 от пластинки 3 до матрицы 1, угол клиновидности пластинки φ_1 (рис. 6), показатель преломления пластинки n_2 , угол падения изображения сцены на пластинку α_1 (рис. 4). При определении смещения проекции изображения L вплоскости матрицы, учтем, что угол φ_2 междунормалями N_1 и N_2 , равен углу φ_1 . Если в точке пересечения прямых G и F построить отрезки, параллельные нормалям, то угол между ними будет также равен φ_1 . В общем виде значение смещения:

$$L = L_1 + L_2, \tag{2}$$

где $L_1 = DZ$ – смещение, вносимое идеальной плоскопараллельной пластинкой, а $L_2 = ZW$ – смещение, создаваемое оптическим клином с углом φ . Смещение L_1 рассчитывается по известной формуле [6], где d – толщина плоскопараллельной пластины 3 (рис. 4):

$$L_1 = d \cdot \frac{\sin(\alpha_1 - \beta_1)}{\cos(\beta_1)}, \qquad (3)$$

Можно показать, что величина L₂ может быть рассчитана по следующей формуле:

$$L_2 = b \cdot tg\left(\alpha_1 - \varphi_1 + \arcsin\left(\sin(\varphi_1 - \beta_1) \cdot \frac{n_2}{n_1}\right)\right),\tag{4}$$

где параметр α_1 определяется следующим образом:

$$\beta_1 = \frac{1}{2} \cdot \arcsin\left(\alpha_1 \cdot \frac{n_1}{n_2}\right). \tag{5}$$

Погрешность методики юстировки микросканера

Погрешность методики юстировки определяется точностью измерения следующих шести параметров: n_2 , φ_1 , l_1 , l_2 , d, b. Ввиду того, что определение L происходит непрямыми измерениями, то при оценке погрешности метода была использована формула для расчета абсолютной погрешности косвенных измерений, приведенная в [7]:

$$\Delta L = \sqrt{\sum_{i=1}^{n} \left(\frac{dL}{dx_i} \Delta x_i\right)^2} , \qquad (6)$$

где ΔL – общая абсолютная погрешность, x_i –параметры, найденные прямыми измерениями указанных шести параметров (n = 6); Δx_i – абсолютная погрешность измерения каждого параметра. Дифференцирование в (6) выполняется по шести параметрам (n_2 , φ_1 , l_1 , l_2 , d, b). Как показывают оценки, приведенная погрешность косвенных измерений не превысила 4 %.

В экспериментах производилось смещение проекции изображения на 4 элемента (120 мкм) согласно указанной методике. Реальное смещение, на-

блюдаемое визуально на видеомониторе, а также полученное в результате обработки кадров на ПК, соответствовало 4 пикселям с погрешностью в пределах полученной нами ее оценки, что подтверждает справедливость разработанной методики по настройке разработанного устройства микросканера.

Технические характеристики устройства

Ниже в таблице представлены основные параметры микросканера с приводом на базе синхронного двигателя с внешним ротором.

Основные параметры микросканера с приводом
на базе синхронного двигателя с внешним ротором

Наименование параметра, единица измерения	Значение
Частота переключения полей, Гц	до 200
Диапазон смещения проекции изображения, мкм:	
– по <i>Y</i>	от 0 до 120
– по Х	от 0 до 120
– максимальный вписанный квадрат перемещений, мкм	до 120 × 120
Время переключения полей, мс	5 и более
Погрешность позиционирования, мкм	4
Максимальный вес оптического элемента, г	10
Минимальное для размещения УМС расстояние между	более 5
компонентами оптики, мм	001100 9
Диаметр рабочей апертуры, мм	26 (возможно
	увеличение до 40)
Габариты микросканера, мм	
– диаметр	103
— толщина	22
Вес микросканера, г	220
Потребляемая мощность (с блоком управления) при часто-	6
те переключений 200 Гц, Вт	0

Заключение

Разработанный прибор (на базе микросканера) позволяет расширить сферу применения фотоприемных устройств с низким разрешением. Микросканер имеет малые массу и габариты. Настройке подлежит лишь угол наклона германиевой пластинки. При остановке двигателя ИК-излучение беспрепятственно проходит через пластинку микросканера. Использование бесколлекторного двигателя исключает появление ВЧ-помех. При этом время работы ограничивается только ресурсом подшипника и согласно [8] для категории машины для односменной работы с неполной нагрузкойсоставляет более 12 000 часов. В данном устройстве исключается искрообразование, что важно при применении его в изделиях специальногоназначения.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Кремис И. И., Толмачев Д. А., Гладков Р. А. Фильтрация остаточной неоднородности и дефектов изображения в тепловизорах третьего поколения с использованием микро сканирования // Прикладная физика. – 2017. – № 1. – С. 58–64.

2. Кремис И. И., Моисеев В. А., Шатунов К. П., Ульянова Е. О., Гладков Р. А., Горшков А. А. Системы микросканирования для тепловизоров третьего поколения // Успехи прикладной физики.– 2017. – Т. 5, № 2.– С. 189–195.

3. Жегалов С. И., Соляков В. Н. Нейронная схема формирования изображения для ФПУ с микросканированием // Успехи прикладной физики. – 2014. – Т. 2, № 4. – С. 398–402.

4. Wiltse J. M., Miller J. L. Imagery improvements in staring infrared imagers by employing subpixel microscan // Optical Engineering. – 2005. – 44 (5). – 056401.

5. Загрубский А. А. Спектральные приборы : учеб. пособие. – СПб., 2007. – 76 с.

6. Кругер М. Я. Справочник конструктора оптико-механических приборов. – Л. : Машиностроение, 1968. – С. 183.

7. Тартаковский Д. Ф., Ястребов А. С. Метрология, стандартизация и технические средства измерения. – М. : Высшая школа, 2001. – С. 50.

8. Подшипники качения : справочник-каталог / под ред. В. Н. Нарышкина и Р. В. Коросташевского. – 1984. – 280 с.

© И. И. Кремис, Р. А. Гладков, 2019