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Introduction 
 
The state of global marine fishery resources, based on FAO’s monitoring of as-

sessed marine fish stocks, has continued to decline [1, p. 6]. This requires substantial 
improvement of fishery management in the framework of ecosystem approach to re-
newable natural resources. 

Substantial struggles are needed for achieving a target (14.4) set for marine fisher-
ies among the UN Sustainable Development Goals [2, p. 24 (35)]: “By 2020, effectively 
regulate harvesting and end overfishing, illegal, unreported and unregulated fishing and 
destructive fishing practices and implement science-based management plans, in order to 
restore fish stocks in the shortest time feasible, at least to levels that can produce maxi-
mum sustainable yield as determined by their biological characteristics.” 

The reader can explore [3, pp. 6–8, 60] as a valuable source for detailed expla-
nation of the terminology and the established models in the field. Thereby the terms 
“depletion” and “depleted” describe respectively the process of decline in biomass 
and the state of a stock driven well beyond its level of maximum productivity (re-
ferred to as the maximum sustainable yield – MSY – level). The term “overfished” is 
a root term for “overexploitation”, “depletion”, “collapse” and may overlap with “re-
building” and “recovery”. 

Depletion is graded depending on severity. Collapses occur because 
of excessive fishing, natural climate-induced calamities or both. Acute depletion may 
lead to collapse and even to extinction as a possible extreme outcome if rebuilding is 
not undertaken in time. 

The terms “recovery” and “rebuilding” have been used interchangeably in the 
stock assessment literature. In the aggregated research approach of the present paper, 
the rebuilt or restored state is achieved whenever an overfished stock has been re-
established to the rebuilding target level (particularly, Xc in Table 3 below). 

In disaggregated studies, the term “rebuilding” is more demanding: it means a 
more comprehensive re-establishment of particular depleted stocks, including age 
structures, evolutionary mechanisms, and population traits. Rebuilding is assumed to 
require much more time to be achieved than time needed to recover or restore over-
fished stocks. 

According to the control theory, open-loop control is completely determined at 
the initial instant t0; here, the integration of the equation (or equations) of motion for 
fixed initial conditions defines the phase trajectory x(t) of the states of the system [4]. 
Closed-loop control (with feedback) assumes the definition of control as a function of 
phase coordinates and time (ibid.). These concepts have wide theoretical and applied 
significance for bioeconomic theory and practice, in particular. 

Science-based management plans are at the core of an adaptive management 
process that includes regulative feedback loops at different time scales based on past 
and present observations and experiences. This requires equilibrium and, especially, 
non-equilibrium system dynamics models of global marine fisheries. Such models 
have to propose policies (harvesting control rules) that can bring global marine fish-
eries from worrying disequilibrium closer to a state that supports MSY. 
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A World Bank’s complete bioeconomic model (WB model) allows assessing 
the sustainability of the global marine fishery [5]. It contains endogenous variables 
involved in feedback loops: biomass, gross and net biomass growth, harvest. Several 
economic variables are not engaged in feedback loops: fishing effort, fish price, costs, 
revenues and net benefits. This model is used, in particular, for comparing how fast 
fisheries’ recovery can be expected depending on the fishery’s governance structure 
supported by interwoven feedback loops for endogenous variables. 

This brief paper analyses a reduced WB model that abstracts from fish price, 
costs, revenues and net benefits. This model, supported by real data and by applica-
tion experiences, has a potential for significant modification. The serious disad-
vantage of this model (as well as of the complete WB model) is exogenous fishing 
effort to be healed in an upgraded model. The notion of MSY is supplemented by no-
tion of fitting sustainable effort (FSE) in this paper. 

W-1, W-2, W-3 and finally W-4 are acronyms for the models considered.  
A higher number corresponds to a higher degree of sophistication measured by a 
quantity of feedback loops involved. Therefore, each subsequent model generalizes 
the preceding one. The reduced WB model is denoted as W-3 hereby. 

The author uses the concept of aggravation modes (regimes), investigated in dif-
ferent contexts, in particular, in [5–9]. Especially dangerous are those arising from 
dominance of the positive feedback connecting biomass and the rate of its net change 
when the biomass diminishes faster and faster. On the other hand, dominance of such 
positive feedback loop can foster recovery of the depleted stock up to the point when 
a maximal positive growth rate of biomass is reached. Afterwards the growth rate of 
biomass asymptotically declines to zero when the biomass approaches stock that can 
open-endedly support MSY as in W-3 and W-4 below. 

 
Natural net growth of biomass in W-1 

 
Fish hatch (give birth), grow to maturity, lay eggs and die. Fish death rate is the 

number of fish per year that die from causes other than fish harvesting. Factors of fish 
population simple growth are reflected by the Pella-Tomlinson net biomass growth 
function as a specific non-linear autonomous differential equation [5, 10 and 11]: 

.( ) –   xx x x                 (1) 

The initial assumptions for (1) are as follows: the rate of reproduction of the 
population is proportional to its current level; the second term of the equation reflects 
intraspecific competition for resources, which limits the growth of the population, or, 
in plain words, the death rate increases as crowding increases. 

If  = 2, the Pella-Tomlinson function becomes the well-known logistic function 
[12], and as approaches unity, it converges to the Fox biomass growth function [13]. 

Tables 1 and 2 reflect variables and parameters of W-1 and subsequent models. 
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Table 1 
The variables of the biomass models 

Variable Notation Measurement unit 
Catch y, c fish mln tons /year 
Fish stock (biomass) x fish mln tons 
Carrying capacity X  1/( 1)( / )    fish mln tons 

Birth rate x fish mln tons / year 
Death rate x  fish mln tons / year 

Net change of fish stock x  fish mln tons / year 
The growth rate of fish stock x̂ 1/year 
The growth rate of catch ŷ 1/year 

 
Table 2 

The parameters and base-year quantities 

Characterization Values How obtained 
Biological coefficients 
Intrinsic growth rate  1.644 Calculated 
(component of death rate) 0.45 Calculated 
Pella-Tomlinson exponent  1.188 Estimated 
Bioeconomic coefficients 
Catchability q 1.76 Calculated 
Schooling parameter b 0.71 Estimated 
Base-year (2012) quantities 
Fishing effort e(2012) 1 Normalized 
Biomass x(2012), fish mln tons 214.9 Calculated 
Landed quantity y(2012), fish mln tons / year 79.69 Estimated 

 
The derivative of the natural net change is defined as 
 

' 1– .x x        (2) 
 
The stationary states are found from the condition that the right-hand side of (1) 

is equal to zero. They differ qualitatively and quantitatively.  
On the one hand, carrying capacity x1 = X is asymptotically stable node, since 

'
1( )x x  = ' ( ) (1 ) 0x X       for  > 1, on the other hand, x2 = 0 is unstable node, as 

'
2( ) 0.x x     
The population growth is S-shaped. The biomass tends to X that can sustain 

most of random external shocks except huge calamities. W-1 is structurally  
stable. 
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Exogenous catch in W-2 
 
W-2 additionally assumes a harvesting control rule implying that human fishing 

activities reduce the increase in the fish population by catch amount y = c = const ≥ 0: 

( )  – .( )x f x x c                      (3) 

Next equation defines the rate of growth of the stock 

1ˆ / ,x x c x                     (4) 

where the hyperbolic element is potent of biomass extinction through aggravation 
mode for some c > 0. A birth of the aggravation mode results from the transition from 

dominant negative feedback ˆx x x    to dominant positive feedback 

ˆx x x   at a tipping point, when the sign of ˆ /x x  = 2 2( 1) /x c x    < 0 

turns into its opposite. Quite dramatically for 0x  x̂  and ˆ / .x x     No-
tice that x = 0 reflecting extinction is not literally mathematical equilibrium. 

W-2 can possess two, one or no stationary states depending on the parameters 
values. Consider one distinct stationary state at first. 

Lemma 1. The line y = c > 0 is tangential to the curve of(x) at Xc with ' 0x 

and '' 0x   – here net increment (x) is globally maximal. Besides ' 0x   for x < Xc 

and ' 0x   for x > Xc. Maximal catch is Yc = (Xc) (Table 3). 
 

Table 3 
Equilibriums for contrast natural-anthropogenic regimes in the models 

Variable 
W-2 (saddle), 

W-3 (stable node) and W-4 (stable node) 
W-3 (saddle) 

and W-4 (unstable node) 

Stock 
x 

Xc =

1
1 

  
= 391.98 

Maximally sustainably fished in W-3, W-4 

xc =

1
1(1 )

( )

b

b

  
    

= 68.68 

Unsustainable 

Catch 
y 

Yc =
1

cX
 




=102 

MSY in W-3 and W-4 

yc = 
( 1)

1 cx
b

  


 = 44.42 

Unsustainable 

Fishing effort 
e 

Ec =
1 1 bXcq

   


= 0.8354 

FSE in W-3 and W-4 

ec = 
( 1)

(1 )
b

cx
q b

  


 = 1.2528 

Unsustainable 
 
Proposition 1. The stationary state for maximal catch Yc is Xc. 
Proof. Apply Lemma 1 and notice that f(Xc) = 0. 
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Corollary 1. No stationary state exists if y = const > Yc. Available biomass x de-
creases from x0 to its elimination through aggravation mode. 

For example, for x0 = X = 980 and c = 110 > Yc = 102 > y0 it takes 45 years until 
extinction through aggravation mode. 

Pay attention to two distinct stationary states. 
Proposition 2. Let 0 < c < Yc. The stationary states are defined as 

2 10 .cx X x   Proof. Thanks to the properties of (x) the line 0 ≤ y = c < Yc inter-

sects the curve of function(x) twice in stationary states 0 < x2 < x1. 

Corollary 2. Lower stationary state 2x is unstable node, since '
2( ) 0,xf x  while 

higher stationary state 1x is stable node, since '
1( ) 0.xf x   

Biomass falls from x0 > 0 to bottommost through aggravation mode whenever  
x0 < x2. Biomass decreases from x0 to x1 if x0 > x1, it increases to x1 if x2 < x0 < x1. 

Let y = y0 < Yc. There are two equilibriums: unstable node x2 = 175.33 < x0 < x1 = 
648.22. The latter is stable node. 

Biomass available in 2012 was not destined for collapse under these assump-
tions. Fixing global catch y0 would facilitate the biomass growth up by factor of 3 as-
ymptotically. On the other hand, extinction, for example, could result from 0 < x0 = 
174 < x2 = 175.33 after 18.9 year. 

It is easy to see that both stationary states merge into one cX if y = Yc. There is a 
catastrophic change in the system's regime in response to a smooth change of this 
control parameter as in the Schaefer – Arnold model [12, 14 and 15]. 

Proposition 3. For y = Yc = ( 1) /cX    , a saddle-node bifurcation takes place. 

This saddle-node is unstable for cx X  and is stable for .cx X  
Proof. The necessary and sufficient conditions for the saddle-node bifurcation 

are fulfilled [16, pp. 84–86]: the fusion of the nodes with the conversion into the sad-
dle is confirmed by the inversion of the derivative at the critical point to zero 

' ( , ) 0x c cf X Y   in the absence of degeneracy in it, '' ,( , ) 0x c cf X Y   and it is addition-

ally supported by transversality condition ' –1 0( , )y c cf X Y    satisfied. 

For the lower (unstable) branch of solutions cx X  derivative ' ( , ) 0x cf x Y  , 

whereas for the upper (stable) branch of solutions cx X  derivative ' ( , ) 0x cf x Y  . In 

other words, cX  is an attractor for cx X and a repeller for cx X . 
Consider saddle equilibrium and saddle-node bifurcation for the given parame-

ters magnitudes: y = Yc > y0, cX = 391.98 > x0. There are stable branch for x > cX  

and unstable branch for 0 .cx X   The constant catch that is only 28 per cent higher 
than the observed one in 2012 would inevitably entirely deplete the global marine 
fish biomass within about 6.5 years. 
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Catch dependence on biomass in reduced WB model W-3 
 

Now a harvesting function, or a harvesting control rule, is defined as 

( ) by E x qex             (5) 

with fishing effort e = const. If b = 0 then abnormal W-3 is identical to W-2. 
W-3 differs from W-2 substantially for 0 < b < 1 as it includes new negative 

feedback loop B2 (Table 4). This structural change is stabilizing for global marine 
fisheries, as the reader will soon see. 

 
Table 4 

Three feedback loops in W-3 

Loops descendant from W-1 and W-2 New loop 

R1 of length 1 
Stock Birth ratex   B2 of length 1 

Stock Catch x y  B1 of length 1 
Stock Death ratex  

 
There is non-linear dependence of the rate of growth of the stock on itself 

1 1ˆ ,bxx qex                     (6) 

where hyperbolic element 1bqex  is potent of aggravation mode leading to extinc-

tion. Indeed, x̂  for 0x   as b < 1 and ˆ /x x  =  
2 2( 1) (1 ) bx b qex        for 0x  . 

W-3 can possess one, two, or three stationary states depending on the parameters 
values. Of course, only for xs = 0 and xs = X it is true that ys = 0 and es = 0. Otherwise, 
for given stationary state xs there can be one or two ys and co-responding one or two 
es for each ys. This disjointedness prohibits direct extension of above Propositions 
from W-2 to W-3. 

Notice that in W-3, contrary to W-2, for es > 0, xd = 0 is broadly asymptotically 

stable (BAS) stationary state as f (0) = 0 and ' ( )xf x   for 0x  . Similarly, xs = X 

is BAS stationary state as f(X) = 0 requires es = 0 and ' ( ) (1 ) 0.xf X       
Stationary catch effort   0se   can be uniquely defined for known stationary 

biomass   0sx   by (5). However, the reverse is not true: for the same stationary 
catch effort   0se   there can be one, two or three stationary biomass magnitudes

0sx  . 

Lemma 2. The line 0 < es = ec is tangential to the curve of functiones(xs) at its 
global maximum in xc (Table 3). 
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Proof. Function ( )s se x  achieves in cx its global maximum ( ) .c c ce x e  Indeed, 

' 0ce   when 1(1 ) / [ ( )] cb b x       , besides that '' 0ce   and ' 0se   for ,s cx x  

' 0 se  for .s cx x  
Corollary 3. No strictly positive equilibrium exists if ce e  (Table 3) since line 

es = const > ec goes wholly strictly above the curve of function es(xs). The only equi-
librium is globally asymptotically stable node xd = 0. The available biomass declines 
from x0 to zero. A biomass collapse through aggravation mode is the consequence of 
a persistent over-stretched effort. 

For example, for x0 = 214.9, e0 = 1.26 > ec = 1.253 it takes about 200 years for 
extinction of the fish despite parallel decline in catch y from y0 = 100.4 to zero. 

Proposition 4. For 0 < es < ec there are three stationary states: BAS node xd = 0, 
unstable node 20 cx x  and stable node 1 .cx x X   

Proof. The line 0 < es = const < ec intersects the curve of function es(xs) in two 

points corresponding to 1x  with '
1( ) 0xf x   and to lower 2x with '

2( ) 0.xf x   
For example, take es = Ec < ec (Table 3). There are three equilibriums: xd = 0 is 

BAS node, x2 = 2.71 is unstable node, x2 < xc < x1 = Xc, x1 is stable node. We see Xc, 
Yc and Ec are also uniquely defined. If the effort in 2012 and in subsequent years was 
fixed at Ec, the biomass would grow up by factor of 1.82 asymptotically from x0. 

Quantitatively the same Xc that is saddle equilibrium in W-2 becomes broadly 
stable node x1 instead thanks to negative FB loop B2 (Table 4). 

Proposition 5. For e = ec, a saddle-node bifurcation takes place. There are two 
equilibriums for ec in W-3: stable node xd = 0 and saddle x = xc (Table 3). 

Proof. Indeed f(0) = 0 and ' ( ) 0xf x   for x close to xd = 0. 
The necessary and sufficient conditions for the saddle-node bifurcation are ful-

filled [16, pp. 84–86]: the fusion of the nodes x1 and x2 with the conversion into the 
saddle xc is confirmed by the inversion of the derivative at the critical point to zero 

' ( , ) 0x c cf x e   in the absence of degeneracy in it, ''( , ) (1 )(1 ) / 0x c c cf x e b x       

and with satisfied transversality condition '0 ( , ) 0.b
e c c cf x e qx     

This saddle-node is unstable for x < cx  and is stable for .cx x  For the lower 

(unstable) branch of solutions cx x the derivative ' ( , ) 0,x cf x e   whereas for the up-

per (stable) branch of solutions cx x the derivative ' ( , ) 0.x cf x e  In other words, cx  

is an attractor for cx x and a repeller for .cx x  
Compare properties of saddle xc in W-3 to those of saddle Xc in W-2 (Table 3). 

Lemma 3. If 1,  1 b    then
1 1

.
b

b




  
 

Corollary 4. The following subordination is true: xc < Xc and yc < Yc. 
Corollary 5. The equality Xc = xc is not possible in W-3. 
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Proof. Indeed, 

1
1 

  
=

1
1(1 )

( )

b

b
  

    
if b = 0 (as in W-2) or b > 0 and 

that is excluded in W-3. 
Corollary 6. If  =  = 0,dx x  then 0, 0;s sy e   if 0 <   ,sx X  then 

,  / 0.b
s s s s s sy x x e y qx      In particular, ( ) 0, ( ) 0. s sy X e X   

Thus, we have considered peculiarities of the three cases of stationary biomass 
magnitudes for given stationary catch effort: one equilibrium case, two equilibriums 
case, and three equilibriums case in W-3. New feedback loop B2 enhances sustain-
ability of maximal catch Yc in particular, through transformation of corresponding 
saddle Xc in W-2 into stable node x1 = Xc higher than new saddle xc in W-3. 

 
Effort dependence on target biomass in W-4 

 

W-1 and W-3 are from [5], W-2 and W-4 as their modifications are developed in 
this paper. Notice that the base-year fishing effort e exceeds FSE, biomass x is over-
fished; catch y is lower than MSY (Table 3). 

Let recovery of biomass capable of robust maximal sustainable yield Yc be the 
goal of stabilization policy. Robustness means that even if the global fishing effort 
e0 equals ec the biomass will not plunge to xc from x(2012) as is inevitable  
in W-3 but will climb to Xc in modified model W-4. Parameter fishing effort e is 
transformed into variable e. This means that W-4 generalises W-3 as its special 
form. 

The causal loop structure of W-4 augments causal loop structure of W-3 with 
new positive feedback loop that includes new variable e (Table 5). 

 
Table 5 

Four feedback loops in W-4 

Loops descendant from W-3 New loop – positive 

R1 of length 1 
Stock Birth ratex   R2 of length 2 

Stock Effort  Catch x e y   B1 of length 1 
Stock Death ratex  

B2 of length 1 
Stock Catch x y   

 
This structural upgrading, not suggested in [5], enables simultaneously needed 

destabilization of former W-3 saddle xc by turning it into W-4 unstable node and – at 
the same time – by keeping W-3 stable node Xc as stable node in W-4 too. 
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Next harvesting control rule is a reasonable substitute for (5) in W-3: 

  , b h by F x xqex q                    (7) 

where variable effort e , new constants  and h are determined as 

0 0( / ) ,h he e x x x                   (8) 

0 0/ 0,he x            (9) 

0 0/ / ln( ) 0.ln( ) /c ch xE e X                               (10) 

The growth rates of biomass, effort and catch are defined next 

1 1ˆ ,h bx x q x                              (11) 

ˆ ˆ,  e hx               (12) 

ˆ ˆ( ) .y h b x                   (13) 

Hyperbolic element 1h bq x     in (11) is potent of aggravation mode. Indeed, 

as h + b < 1 consequently x̂  for 0x   and ˆ /x x    for 0x  . 
Lemma 4. Let 0 ,ce e  0 cy y  and 0 .cx x  Then in agreement with (10) 

/ / ln( ) 0.ln( ) /c c cc ch xE e X   
Proposition 6. For these parameters, there are three equilibriums in W-4: BAS 

node xd = 0, unstable node 2 cx x and stable node 1 .cx X  Corresponding effort and 

catch are e = 0, y = 0 for xd, ec and yc – for 2x , finally Ec and Yc – for 1x . 
Proof. Check stationarity and stability (instability) of these three points: f(0) = 0, 

' ( )xf x   for 0x  therefore xd is BAS node as in W-3; f(xc) = 0 by definition of 

xc for e = ec, 
' ( , ) 0x c cf x e   therefore xc is unstable node contrary to W-3; f(Xc) = 0 

and ' ( , ) 0x c cf X E   due to Lemma 4 therefore Xc is stable node as in W-3. 

For the given data, 3.351c   and 0.2326.ch   If initially e(0) = ec = 1.253, 
x(0) = 68 < cx = x2, the biomass plunges to extinction accompanied by relentless 
growth of effort e; for x(0) = 70 > x2 the biomass climbs to stable node x1 = Xc while 
effort e diminishes to Ec (Tables 3 and 6). 

If non-equilibrium biomass, catch and effort observed in 2012 are used instead 
then  = 4.989, h = –0.2993 and x2 = 106.4. In the satisfying solution, biomass x and 
catch y will climb for 40 years asymptotically from 54.8 to 98.6 per cent of cX  and 
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from 78.1 to 99.4 per cent of cY whereas effort e will asymptotically decline from 

119.7 to 100.4 per cent of cE . This targeted transition is moderate in pace. 
 

Table 6 
Specific equilibriums in W-2, W-3 and W-4 

Equilibrium W-2 W-3 W-4 (for hc) 

Stock xd 
(BAS node) 

(not present) (not present) 0 0 0 

Stock x2 
(unstable 

node) 

175.33 
Overfished 

x(2012) = 
214.9 

Overfished 

7.26 
Overfished 

13.61 
Overfished 

xc = 68.68 
Overfished 

 

Stock x1 
(stable node) 

648.22 
Underfished 

594.31 
Underfished 

283.14 
Overfished 

x(2012) = 
214.9 

Overfished 

Xc = 391.98 
Maximally sus-
tainably fished 

Catch 
y for x1 

y(2012) = 
79.69 (const) 

< MSY 

87.7 (const) 
< MSY 

96.93 
< MSY 

87.7 < MSY 
 

Yc = 102 
MSY 

Effort 
e for x1 

(implicit 
y0/(qx1

b)) 
0.457 < FSE 

(implicit 
y0/(qx1

b)) 
0.535 < FSE 

e(2012) = 1 
(const) > 

FSE 

1.1 (const) > 
FSE 

 

Ec = 0.8354 
FSE 

 
Conclusion 

 
This study augments W-3 by a revitalising positive feedback loop in W-4. This 

loop implies endogenously reduced fishing effort to rebuild the overfished fish stock. 
The harvesting control rules are developed, firstly, for avoiding extinction of the 

global marine fish through typical aggravation modes in W-2 and W-3 and, secondly, 
for attaining maximal sustainable yield (MSY) and fitting sustainable effort (FSE) 
asymptotically in W-4. 

The disequilibrium initial state of the 2012 year has had margins of safety (Ta-
ble 6) favorable for recovery of the overfished stock under the proposed harvesting 
control rules. Catching more fish with the same or less fishing effort could happen 
due to the organized increases in the biomass in W-2, W-3 and W-4. 

Control solutions with jump discontinuity in fishing effort for a most rapid path 
based on Pontryagin’s maximum principle [4, 5, 17 and 18] will be substituted by 
smooth proportional and derivative control in original two-dimensional predator – 
prey models in line with [15]. Transition time from y(2012) to vicinity (99 per cent) 
of MSY could be reduced under urgency from about forty years in the satisfying so-
lution in W-4 to roughly ten years through parametric policy optimization in the 
predator – prey models. Social and political costs associated with altering the way 
fisheries are operated will be taken into fuller account than in the neo-liberal policy 
proposals grounded on mainstream (“neoclassical”) models. 



221 

A later work will also address system dynamics aspects of fish price, costs, rev-
enues and net benefits touched in [5] still without mentioning transnational corpora-
tions as key actors in marine ecosystems. Choking this omission requires deepening 
the simple functional relationships between fish replenishment and human fishing ac-
tivities. 

 
This study has been carried out with the plan of research work of IEIE SB RAS; 

project “Innovative and environmental aspects of structural transformation of the 
Russian economy in the new geopolitical reality”, no. АААА-А17-117022250127-8. 
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