МОДЕЛИРОВАНИЕ РАБОТЫ ПОГРУЖНОГО ГИДРОУДАРНИКА ДЛЯ ПРОХОДКИ СКВАЖИН В ПРОЧНЫХ ПОРОДАХ

Леонид Владимирович Городилов

Институт горного дела им. Н. А. Чинакала СО РАН, 630091, Россия, г. Новосибирск, Красный пр., 54, доктор технических наук, зав. лабораторией моделирования импульсных систем, тел. (383)205-30-30, доп. 118, e-mail: gor@misd.ru

Денис Владимирович Вагин

Институт горного дела им. Н. А. Чинакала СО РАН, 630091, Россия, г. Новосибирск, Красный пр., 54, кандидат технических наук, научный сотрудник лаборатории моделирования импульсных систем, тел. (383)205-30-30, доп. 118, e-mail: vdv_wk@ mail.ru

Представлена компьютерная модель гидроударной системы с протяженными напорной и сливной линиями. Для заданных параметров гидроударного устройства (гидроударника) двухстороннего действия и источника расхода проведены численные расчеты влияния глубины (длины напорной и сливной линий L) и направления (угла наклона α к горизонту) скважины на его характеристики. Приводятся осциллограммы характеристик рабочих циклов элементов гидроударника, а также зависимости интегральных характеристик (предударной скорости бойка и частоты ударов, ударной мощности и КПД системы) от величин L и α.

Ключевые слова: гидрударник, скважина, угол наклона, частота ударов, ударная мощность.

OPERATIONAL SIMULATION OF IMMERSED HYDRAULIC HUMMER FOR HOLE BORING AT SOLID ROCKS

Leonid V. Gorodilov

Chinakal Institute of Mining SB RAS, 54, Krasny Prospect St., Novosibirsk, 630091, Russia, D. Sc., Head of Pulse System Modeling Laboratory, phone: (383)205-30-30, extension 118, e-mail: gor@misd.ru

Denis V. Vagin

Chinakal Institute of Mining SB RAS, 54, Krasny Prospect St., Novosibirsk, 630091, Russia, Ph. D., Researcher, Pulse System Modeling Laboratory, phone: (383)205-30-30, extension 240, e-mail: vdv_wk@mail.ru

Computer model of hydraulic percussive system with long pressure and drop-out lines is presented. Numerical calculations of impact of depth (length of pressure and drop-out line L) and direction (slope angle to horizon α) on its characteristics are carried out for given parameters of hydraulic percussive device (hydraulic hummer) double-side action and source of discharge. Oscillogram charts of characteristics of working cycles of hydraulic hummer elements and dependences of integral characteristics (pre-shock rate of pane, frequency of shocks, shocking power and efficiency of the system) on quantities L and α are shown.

Key words: hydraulic hummer, hole, slope angle, frequency of shocks, shocking power.

В [1] проведен анализ современного состояния развития техники и технологий бурения скважин погружными ударниками. Выделены преимущества погружных гидроударников (гидроударных устройств): возможность бурения в прочных породах, большая по сравнению с бурением пневмоударным методом глубина скважин (до 2000 метров и выше), прямолинейность траектории, низкие энергозатраты, экологическая чистота. Отмечено, что известные погружные гидроударники являются машинами динамического типа [2-5], имеющими низкий (не более 6...8 %) КПД. Эффективность гидроударного бурения можно существенно повысить, адаптировав для этой цели гидроударники объемного типа, КПД которых доходит до 70 % и выше.

Для решения этой задачи необходимо проведения всесторонних теоретических и экспериментальных исследований, подтверждающих возможность использования указанного типа устройств при бурении скважин. Определенные усилия в этом направлении в ИГД СО РАН предпринимались и ранее [6, 7], однако в связи с недостатком финансирования они были прекращены. В последнее десятилетия проведен комплекс фундаментальных исследований объемных гидроударных систем, разработаны основы их теории, созданы оригинальные конструкции гидроударных и распределительных устройств, программы их расчета и выбора параметров [9-15]. Применение результатов этих исследований для разработки погружных гидроударников объемного типа представляется целесообразным и может привести к существенному продвижению в этом направлении.

В настоящей работе, с использованием программы имитационного моделирования гидроимпульсных систем [14], были проведены численные исследования влияния глубины скважин (длины напорной и сливной линий L) и угла наклона α к горизонту на характеристики погружного гидроударного устройства (была использована расчетная схема гидроударной системы двухстороннего действия [15]).

В модель гидроударной системы были включены длинные гидравлические линии, элементы которых включали инерционная сила и сила тяжести, что позволило исследовать динамику и характеристики устройств при изменении направления скважин (угла к горизонту α).

На рис. 1 представлена схема работы погружного гидроударного устройства в забое при бурении скважины под углом α к горизонту (при отсчете против часовой стрелки, как показано на рисунке, значение угла – отрицательное).

Рис. 1. Схема работы погружного гидроударника: 1 – горная выработка; 2 – скважина; 3 – буровой став; 4 – гидроударное устройство

Общие параметры системы были взяты из отчета [4]: насос расходом $q_0 = 90$ л/мин, КПД =0.8 при давлении 16 МПа, напорная линия – труба диаметром 30 мм, сливная – кольцевая труба внутренним и внешним диаметром соответственно 60 и 90 мм, боек массой 6 кг с площадями со сторон камер обратного (А) и прямого (В) хода соответственно 3 и 9 см³, длина фазы обратного хода – 4 см, пружинный аккумулятор с жесткостью пружины $1.6 \cdot 10^5$ H/м.

В расчетах варьировали диаметр напорной линии D_p от 0.015 до 0.06 м (сливная представляла собой кольцо с внутренним диаметром $d = D_p+0.02$ м и внешним – D = 0.09 м), длину скважины от L от 10 до 400 м и угол наклона скважины к горизонту α от -90 до +90 град.

На рис. 2 представлены зависимости ударной мощности N и КПД системы от диаметра напорной линии (L = 400 м, α = 0 град), из которых следует, что при диаметре D_p>0.025 м они практически не оказывают влияния на ее интегральные характеристики. В дальнейших расчетах принимали D_p = 0.03 м.

Рис. 2. Зависимости ударной мощности N (*a*, в кВт) и КПД (б) системы от диаметра напорной линии D_p (в м)

На рис. 3 представлены графики зависимостей ударной мощности N и КПД системы от длины скважины при разных углах наклона α. Заметно снижение этих показателей при увеличении длины скважины L, сильнее выраженное при нисходящем и восходящем положениях скважин, причем в последнем случае КПД еta падает более чем на 20 %.

При расположении скважины вертикально вниз КПД и N системы также снижаются, но их отличие от горизонтального положения незначительно. Графики зависимостей частоты f, предударной скорости бойка vI, ударной мощности N и КПД системы от угла α для длин скважины L = 50, 200 и 400 м, представленные на графиках рис. 4, показывают, что при возрастании угла α до 0 при больших длинах L наблюдается заметно увеличение частоты ударов f и КПД еta, которые при дальнейшем росте α (до +90 град) практически не изменяются.

На рис. 5, *а*–*в* представлены осциллограммы динамических характеристик предельных циклов гидроударной системы при L = 400 м, α =-90, 0, +90 град.

На них наблюдается естественное повышение давления в ветвях гидросистемы при восходящем и нисходящем положениях скважины, величина которого определяется влиянием силы тяжести (рис. 6, *a*, *e*, осциллограммы р.3.1.1 (давление за насосом), р.3.1.200 (давление в середине напорной линии), р.3.1.400 (давление перед ударным устройством)). Отметим также формирование хорошо выраженных скачков расхода жидкости в напорной линии перед ударным устройством во время взаимодействия бойка с ограничителем (рис. 5, *a*–*e*, осциллограммы q.3.1.400).

Рис. 3. Зависимости ударной мощности N (слева, в кВт) и КПД (справа) системы от длины скважины L (в м) при углах наклона $\alpha = -90$ град (a, δ), $\alpha = 0$ град (δ, ϵ), $\alpha = +90$ град (c, δ)

 ∂)

3)

u)

ж)

Рис. 4 Зависимости частоты ударов f (*a*, *б*, *в*), предударной скорости бойка vI (*z*, *d*, *e*), ударной мощности N (*ж*, *з*, *u*) и КПД – (*к*, *л*, *м*) системы от угла α наклона скважины к горизонту при длинах скважин L = 50 м (слева), 200 м (в центре) и 400 м (справа)

Рис. 5. Осциллограммы динамических характеристик (соответствующих элементам блок-схемы рис. 1) предельных циклов гидроударной системы:

x – координата бойка (в м/с), р и q – давления и расходы в ветвях гидравлической системы скорости бойка (в Па и м³/с), по оси абсцисс – время t в c; L = 200 м; a) α = -90°C; δ) α = 0°C; e) α = +90°C

В результате проведенных численных исследований получены и проанализированы характеристики предельных циклов погружных гидроударных устройств при изменении длины и направления проходимых скважин. Получены зависимости, характеризующие влияние угла наклона скважины на изменение интегральных характеристик устройств для больших длин скважин. Представленные результаты требуют более широкого рассмотрения и тестирование математической модели системы, ее верификации с проведением экспериментальных исследований.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Городилов Л. В. Об эффективности бурения скважин погружными гидроударными устройствами // Интерэкспо ГЕО-Сибирь. XIV Междунар. науч. конгр. : Междунар. науч. конф. «Недропользование. Горное дело. Направления и технологии поиска, разведки и разработки месторождений полезных ископаемых. Экономика. Геоэкология» : сб. материалов в 6 т. (Новосибирск, 23–27 апреля 2018 г.). – Новосибирск : СГУГиТ, 2018. Т. 5. – С. 325–332.

2. Алимов О.Д., Басов С.А. Гидравлические виброударные системы. – М.: Наука. – 1990. – 350 с.

3. Граф Л. Э., Коган Д. И. Гидроударные машины и инструмент. – М. : Недра, 1972. – 206 с.

4. Киселев, А. Т., Меламед Ю. А. Гидроударное бурение – итоги и перспективы // Разведка и охрана недр. – 1996. – № 9. - С. 19–22.

5. Volker Wittig; Rolf Bracke; Yoon Hyun-Ick. Hydraulic DTH Fluid / Mud Hammers with Recirculation Capabilities to Improve ROP and Hole Cleaning For Deep, Hard Rock Geothermal Drilling // Proceedings World Geothermal Congress 2015 Melbourne, Australia, 19-25 April 2015. pp. 1-9.

6. TUOMAS GÖRAN. Water Powered Percussive Rock Drilling - Process Analysis, Modelling and Numerical Simulation. PHD Thesis. Luleå University of Technology. Luleå, Dep. of Civil and Environmental Engineering, 2004.

7. Липин А.А. Бурение скважин погружными пневмогидроударными машинами// Изв. Вузов, Строительство. – 2000. – № 12. – С. 62–68.

8. Липин А.А., Белоусов А.В. Погружной гидроударник. // Патент РФ № 2230873. Опубл. БИ. – 2004. – № 17.

9. Городилов, Л.В., Кудрявцев, В.Г., Пашина О.А. Стенд и методика экспериментальных исследований гидроударных систем // ФТПРПИ. 2011. – № 6. – С. 67–76.

10. Городилов Л.В. Исследование динамики гидроударных объемных систем двухстороннего действия. Ч. І. Основные свойства // ФТПРПИ. 2012. – № 3. – С. 91–101.

11. Городилов Л.В. Исследование динамики гидроударных объемных систем двухстороннего действия. Ч. II: влияние на характеристики предельных циклов конструктивных особенностей устройств и условий их взаимодействия с горным массивом // ФТПРПИ. 2013. – № 3. – С. 127–138.

12. Голдобин В.А., Городилов Л.В., Маттис А.Р. Способ управления рабочим циклом гидравлической ударной машины // Патент РФ №2182967. Опубл. БИ - 2002. – №15.

13. Городилов Л. В., Кудрявцев В. Г., Пашина О. А. Распределитель гидравлических ударных устройств // Патент РФ № 165144. Опубл. БИ - 2016. – № 28.

14. Городилов Л.В., Вагин Д.В. Архитектура программного обеспечения для моделирования гидравлических приводов горных и строительных машин // Проблемы недропользования. – 2016. – Выпуск 3(10). – С. 48–52.

15. Городилов Л. В. Анализ динамики и характеристик основных классов автоколебательных гидроударных систем объемного типа // Проблемы машиностроения и надежности машин. – 2018. – № 1. – С. 22–30.

© Л. В. Городилов, Д. В. Вагин, 2019