DOI: 10.33764/2618-981X-2019-2-4-26-32

## МОДЕЛИРОВАНИЕ РАБОТЫ ПОГРУЖНОГО ГИДРОУДАРНИКА ДЛЯ ПРОХОДКИ СКВАЖИН В ПРОЧНЫХ ПОРОДАХ

### Леонид Владимирович Городилов

Институт горного дела им. Н. А. Чинакала СО РАН, 630091, Россия, г. Новосибирск, Красный пр., 54, доктор технических наук, зав. лабораторией моделирования импульсных систем, тел. (383)205-30-30, доп. 118, e-mail: gor@misd.ru

### Денис Владимирович Вагин

Институт горного дела им. Н. А. Чинакала СО РАН, 630091, Россия, г. Новосибирск, Красный пр., 54, кандидат технических наук, научный сотрудник лаборатории моделирования импульсных систем, тел. (383)205-30-30, доп. 118, e-mail: vdv\_wk@ mail.ru

Представлена компьютерная модель гидроударной системы с протяженными напорной и сливной линиями. Для заданных параметров гидроударного устройства (гидроударника) двухстороннего действия и источника расхода проведены численные расчеты влияния глубины (длины напорной и сливной линий L) и направления (угла наклона α к горизонту) скважины на его характеристики. Приводятся осциллограммы характеристик рабочих циклов элементов гидроударника, а также зависимости интегральных характеристик (предударной скорости бойка и частоты ударов, ударной мощности и КПД системы) от величин L и α.

**Ключевые слова:** гидрударник, скважина, угол наклона, частота ударов, ударная мощность.

# OPERATIONAL SIMULATION OF IMMERSED HYDRAULIC HUMMER FOR HOLE BORING AT SOLID ROCKS

### Leonid V. Gorodilov

Chinakal Institute of Mining SB RAS, 54, Krasny Prospect St., Novosibirsk, 630091, Russia, D. Sc., Head of Pulse System Modeling Laboratory, phone: (383)205-30-30, extension 118, e-mail: gor@misd.ru

#### Denis V. Vagin

Chinakal Institute of Mining SB RAS, 54, Krasny Prospect St., Novosibirsk, 630091, Russia, Ph. D., Researcher, Pulse System Modeling Laboratory, phone: (383)205-30-30, extension 240, e-mail: vdv wk@mail.ru

Computer model of hydraulic percussive system with long pressure and drop-out lines is presented. Numerical calculations of impact of depth (length of pressure and drop-out line L) and direction (slope angle to horizon  $\alpha$ ) on its characteristics are carried out for given parameters of hydraulic percussive device (hydraulic hummer) double-side action and source of discharge. Oscillogram charts of characteristics of working cycles of hydraulic hummer elements and dependences of integral characteristics (pre-shock rate of pane, frequency of shocks, shocking power and efficiency of the system) on quantities L and  $\alpha$  are shown.

**Key words:** hydraulic hummer, hole, slope angle, frequency of shocks, shocking power.

В [1] проведен анализ современного состояния развития техники и технологий бурения скважин погружными ударниками. Выделены преимущества погружных гидроударников (гидроударных устройств): возможность бурения в прочных породах, большая по сравнению с бурением пневмоударным методом глубина скважин (до 2000 метров и выше), прямолинейность траектории, низкие энергозатраты, экологическая чистота. Отмечено, что известные погружные гидроударники являются машинами динамического типа [2-5], имеющими низкий (не более 6...8 %) КПД. Эффективность гидроударного бурения можно существенно повысить, адаптировав для этой цели гидроударники объемного типа, КПД которых доходит до 70 % и выше.

Для решения этой задачи необходимо проведения всесторонних теоретических и экспериментальных исследований, подтверждающих возможность использования указанного типа устройств при бурении скважин. Определенные усилия в этом направлении в ИГД СО РАН предпринимались и ранее [6, 7], однако в связи с недостатком финансирования они были прекращены. В последнее десятилетия проведен комплекс фундаментальных исследований объемных гидроударных систем, разработаны основы их теории, созданы оригинальные конструкции гидроударных и распределительных устройств, программы их расчета и выбора параметров [9-15]. Применение результатов этих исследований для разработки погружных гидроударников объемного типа представляется целесообразным и может привести к существенному продвижению в этом направлении.

В настоящей работе, с использованием программы имитационного моделирования гидроимпульсных систем [14], были проведены численные исследования влияния глубины скважин (длины напорной и сливной линий L) и угла наклона α к горизонту на характеристики погружного гидроударного устройства (была использована расчетная схема гидроударной системы двухстороннего действия [15]).

В модель гидроударной системы были включены длинные гидравлические линии, элементы которых включали инерционная сила и сила тяжести, что позволило исследовать динамику и характеристики устройств при изменении направления скважин (угла к горизонту  $\alpha$ ).

На рис. 1 представлена схема работы погружного гидроударного устройства в забое при бурении скважины под углом α к горизонту (при отсчете против часовой стрелки, как показано на рисунке, значение угла – отрицательное).



Рис. 1. Схема работы погружного гидроударника:

1 – горная выработка; 2 – скважина; 3 – буровой став; 4 – гидроударное устройство

Общие параметры системы были взяты из отчета [4]: насос расходом  $q_0 = 90$  л/мин, КПД =0.8 при давлении 16 МПа, напорная линия — труба диаметром 30 мм, сливная — кольцевая труба внутренним и внешним диаметром соответственно 60 и 90 мм, боек массой 6 кг с площадями со сторон камер обратного (A) и прямого (B) хода соответственно 3 и 9 см<sup>3</sup>, длина фазы обратного хода — 4 см, пружинный аккумулятор с жесткостью пружины  $1.6 \cdot 10^5$  H/м.

В расчетах варьировали диаметр напорной линии  $D_p$  от 0.015 до 0.06 м (сливная представляла собой кольцо с внутренним диаметром  $d=D_p+0.02$  м и внешним -D=0.09 м), длину скважины от L от 10 до 400 м и угол наклона скважины к горизонту  $\alpha$  от -90 до +90 град.

На рис. 2 представлены зависимости ударной мощности N и КПД системы от диаметра напорной линии (L = 400 м,  $\alpha$  = 0 град), из которых следует, что при диаметре  $D_p > 0.025$  м они практически не оказывают влияния на ее интегральные характеристики. В дальнейших расчетах принимали  $D_p = 0.03$  м.



Рис. 2. Зависимости ударной мощности N (a, в кВт) и КПД  $(\delta)$  системы от диаметра напорной линии  $D_p$  (в м)

На рис. 3 представлены графики зависимостей ударной мощности N и КПД системы от длины скважины при разных углах наклона α. Заметно снижение этих показателей при увеличении длины скважины L, сильнее выраженное при нисходящем и восходящем положениях скважин, причем в последнем случае КПД eta падает более чем на 20 %.

При расположении скважины вертикально вниз КПД и N системы также снижаются, но их отличие от горизонтального положения незначительно. Графики зависимостей частоты f, предударной скорости бойка vI, ударной мощности N и КПД системы от угла  $\alpha$  для длин скважины L = 50, 200 и 400 м, представленные на графиках рис. 4, показывают, что при возрастании угла  $\alpha$  до 0 при больших длинах L наблюдается заметно увеличение частоты ударов f и КПД eta, которые при дальнейшем росте  $\alpha$  (до +90 град) практически не изменяются.

На рис. 5, a—e представлены осциллограммы динамических характеристик предельных циклов гидроударной системы при L = 400 м,  $\alpha = -90$ , 0, +90 град.

На них наблюдается естественное повышение давления в ветвях гидросистемы при восходящем и нисходящем положениях скважины, величина которого определяется влиянием силы тяжести (рис. 6, a, e, осциллограммы р.3.1.1 (давление за насосом), р.3.1.200 (давление в середине напорной линии), р.3.1.400 (давление перед ударным устройством)). Отметим также формирование хорошо выраженных скачков расхода жидкости в напорной линии перед ударным устройством во время взаимодействия бойка с ограничителем (рис. 5, a–e, осциллограммы q.3.1.400).



Рис. 3. Зависимости ударной мощности N (слева, в кВт) и КПД (справа) системы от длины скважины L (в м) при углах наклона  $\alpha = -90$  град  $(a, \delta)$ ,  $\alpha = 0$  град  $(\delta, \delta)$ ,  $\alpha = +90$  град  $(\epsilon, \delta)$ 



Рис. 4 Зависимости частоты ударов f  $(a, \delta, \epsilon)$ , предударной скорости бойка vI  $(z, \delta, \epsilon)$ , ударной мощности N  $(\varkappa c, 3, u)$  и КПД –  $(\kappa, \pi, M)$  системы от угла  $\alpha$  наклона скважины к горизонту при длинах скважин L = 50 м (слева), 200 м (в центре) и 400 м (справа)





Рис. 5. Осциллограммы динамических характеристик (соответствующих элементам блок-схемы рис. 1) предельных циклов гидроударной системы:

х – координата бойка (в м/с), р и q – давления и расходы в ветвях гидравлической системы скорости бойка (в Па и м<sup>3</sup>/с), по оси абсцисс – время t в c; L = 200 м; a)  $\alpha = -90$ °C;  $\theta$ )  $\alpha = +90$ °C

В результате проведенных численных исследований получены и проанализированы характеристики предельных циклов погружных гидроударных устройств при изменении длины и направления проходимых скважин. Получены зависимости, характеризующие влияние угла наклона скважины на изменение интегральных характеристик устройств для больших длин скважин. Представленные результаты требуют более широкого рассмотрения и тестирование математической модели системы, ее верификации с проведением экспериментальных исследований.

### БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Городилов Л. В. Об эффективности бурения скважин погружными гидроударными устройствами // Интерэкспо ГЕО-Сибирь. XIV Междунар. науч. конгр. : Междунар. науч. конф. «Недропользование. Горное дело. Направления и технологии поиска, разведки и разработки месторождений полезных ископаемых. Экономика. Геоэкология» : сб. материалов в 6 т. (Новосибирск, 23–27 апреля 2018 г.). Новосибирск : СГУГиТ, 2018. Т. 5. С. 325–332.
- 2. Алимов О.Д., Басов С.А. Гидравлические виброударные системы. М.: Наука. 1990. 350 с.
- 3. Граф Л. Э., Коган Д. И. Гидроударные машины и инструмент. М. : Недра, 1972. 206 с.
- 4. Киселев, А. Т., Меламед Ю. А. Гидроударное бурение итоги и перспективы // Разведка и охрана недр. -1996. № 9. С. 19-22.
- 5. Volker Wittig; Rolf Bracke; Yoon Hyun-Ick. Hydraulic DTH Fluid / Mud Hammers with Recirculation Capabilities to Improve ROP and Hole Cleaning For Deep, Hard Rock Geothermal Drilling // Proceedings World Geothermal Congress 2015 Melbourne, Australia, 19-25 April 2015. pp. 1-9.
- 6. TUOMAS GÖRAN. Water Powered Percussive Rock Drilling Process Analysis, Modelling and Numerical Simulation. PHD Thesis. Luleå University of Technology. Luleå, Dep. of Civil and Environmental Engineering, 2004.
- 7. Липин А.А. Бурение скважин погружными пневмогидроударными машинами// Изв. Вузов, Строительство. 2000. № 12. С. 62–68.
- 8. Липин А.А., Белоусов А.В. Погружной гидроударник. // Патент РФ № 2230873. Опубл. БИ. 2004. № 17.
- 9. Городилов, Л.В., Кудрявцев, В.Г., Пашина О.А. Стенд и методика экспериментальных исследований гидроударных систем // ФТПРПИ. 2011. № 6. С. 67–76.
- 10. Городилов Л.В. Исследование динамики гидроударных объемных систем двухстороннего действия. Ч. І. Основные свойства // ФТПРПИ. 2012. № 3. С. 91–101.
- 11. Городилов Л.В. Исследование динамики гидроударных объемных систем двухстороннего действия. Ч. II: влияние на характеристики предельных циклов конструктивных особенностей устройств и условий их взаимодействия с горным массивом // ФТПРПИ. 2013. N 3. С. 127–138.
- 12. Голдобин В.А., Городилов Л.В., Маттис А.Р. Способ управления рабочим циклом гидравлической ударной машины // Патент РФ №2182967. Опубл. БИ 2002. №15.
- 13. Городилов Л. В., Кудрявцев В. Г., Пашина О. А. Распределитель гидравлических ударных устройств // Патент РФ № 165144. Опубл. БИ 2016. № 28.
- 14. Городилов Л.В., Вагин Д.В. Архитектура программного обеспечения для моделирования гидравлических приводов горных и строительных машин // Проблемы недропользования. 2016. Выпуск 3(10). С. 48—52.
- 15. Городилов Л. В. Анализ динамики и характеристик основных классов автоколебательных гидроударных систем объемного типа // Проблемы машиностроения и надежности машин. -2018. -№ 1. C. 22–30.