DOI: 10.33764/2618-981X-2019-2-2-261-267

ФИЛЬТРАЦИОННО-ЕМКОСТНЫЕ СВОЙСТВА И ЗАКОНОМЕРНОСТИ ИХ ИЗМЕНЕНИЯ В ЗАВИСИМОСТИ ОТ ГЛУБИНЫ ЗАЛЕГАНИЯ РЕГИОНАЛЬНЫХ РЕЗЕРВУАРОВ ЮРСКИХ ОТЛОЖЕНИЙ СИБИРСКОГО СЕКТОРА АРКТИКИ

Георгий Георгиевич Шемин

Институт нефтегазовой геологии и геофизики им. А. А. Трофимука СО РАН, 630090, Россия, г. Новосибирск, пр. Академика Коптюга, 3, доктор геолого-минералогических наук, главный научный сотрудник, тел. (383)335-64-20, e-mail: SheminGG@ipgg.sbras.ru

Наталья Владимировна Первухина

Институт нефтегазовой геологии и геофизики им. А. А. Трофимука СО РАН, 630090, Россия, г. Новосибирск, пр. Академика Коптюга, 3, кандидат геолого-минералогических наук, старший научный сотрудник, тел. (383)335-64-20, e-mail: PervuhinaNV@ipgg.sbras.ru

Приведена характеристика фильтрационно-емкостных свойств коллекторов. Освещена выявленная закономерность изменения пористости и проницаемости гранулярных коллекторов в зависимости от глубины залегания резервуаров. Объяснена причина ухудшения фильтрационно-емкостных свойств коллекторов резервуаров в зависимости от глубины их залегания.

Ключевые слова: региональный резервуар, проницаемый комплекс, коллектор, фильтрационно-емкостные свойства, пористость, проницаемость.

POROSITY-AND-PERMEABILITY PROPERTIES AND REGULARITIES IN THEIR CHANGES AS DEPENDING ON THE DEPTH OF OCCURRENCE FOR REGIONAL RESERVOIRS OF JURASSIC DEPOSITS IN SIBERIAN SECTOR OF THE ARCTIC

Georgy G. Shemin

Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, 3, Prospect Akademik Koptyug St., Novosibirsk, 630090, Russia, D. Sc., Chief Researcher, phone: (383)335-64-20, e-mail: SheminGG@ipgg.sbras.ru

Natal'ya V. Pervukhina

Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, 3, Prospect Akademik Koptyug St., Novosibirsk, 630090, Russia, Ph. D., Senior Researcher, phone: (383)335-64-20, e-mail: PervuhinaNV@ipgg.sbras.ru

The revealed regularity of changes in porosity and permeability of granular reservoirs as depending on the depth of their occurrence is shown. The reason is substantiated why the porosity-and-permeability properties of the reservoirs deteriorate as depending on the depth of their occurrence.

Key words: regional reservoir, permeable complex, natural reservoir, porosity-and-permeability properties, porosity, permeability.

Юрские отложения почти повсеместно распространены в сибирском секторе Арктики. Перспективы нефтегазоносности их оценивают по-разному, особенно нижнесреднеюрских – от перспективных до средних и пониженных перспектив. Различная оценка перспектив этих отложений в значительной мере обусловлена недостаточной степенью изученности фильтрационно-емкостных свойств (ФЕС) коллекторов и, прежде всего, закономерности их изменения в зависимости от глубины залегания, хотя в этом направлении многое сделано. Авторами статьи на большом аналитическом материале определений открытой пористости (8 тыс. определений) и межзерновой проницаемости (6,3 тыс. определений) гранулярных коллекторов проницаемых комплексов региональных резервуаров юрских отложений выполнен анализ ФЕС и выяснены закономерности их изменения в зависимости от глубины залегания в рассматриваемом регионе, включающем арктические районы Западно-Сибирской и Хатангско-Вилюйской нефтегазоносных провинций (НГП).

Юрские отложения в этом регионе образуют одноименный нефтегазоносный этаж. Флюидоупором его являются преимущественно глинистые отложения кимериджского и волжского ярусов (баженовская, георгиевская свиты и их возрастные аналоги). Проницаемый мегакомпекс включает песчано-алевролито-глинистые образования нижней и средней юры, а также оксфорда.

В составе юрского нефтегазоносного этажа обычно выделяются несколько нефтегазоносных комплексов более низкого порядка, региональных резервуаров: нижне-среднеюрский, васюганский, баженовский [3], зимний, шараповский, надояхский, вымский, малышевский [1] и другие. В настоящей работе использована классификация региональных резервуаров юрских отложений исследуемого региона, разработанная одним из авторов статьи [5]. Согласно отмеченной классификации, они подразделяются на шесть региональных резервуаров: оксфордский, батский, аален-байосский, тоарский, плинсбахский и геттанг-синемюрский, состоящих из проницаемых комплексов и флюидоупоров.

Фильтрационно-емкостные свойства гранулярных коллекторов проницаемого мегакомплекса юрского нефтегазоносного этажа сибирского сектора Арктики характеризуются следующими показателями. Открытая пористость их изменяется от 8 до 28%, межзерновая проницаемость — от долей до 1690•10⁻³ мкм². Эффективная пористость и проницаемость варьируют соответственно от 12 до 28% и от 0.1 до 1690•10⁻³ мкм². Наиболее часто первый параметр изменяется в интервале от 12 до 14%, реже — от 10 до 11 и от 15 до 16%, еще реже — от 8 до 9 и от 17 до 18% и очень редко — от 19 до 28%. Межзерновая проницаемость коллекторов в основном характеризуется значениями от 0.01 до 1•10⁻³ мкм², реже - от 1 до 10•10⁻³ мкм², еще реже - от 10 до 100•10⁻³ мкм², и в единичных случаях фиксируются ее значения свыше 100•10⁻³ мкм². В целом, гранулярные коллекторы юрских резервуаров рассматриваемого региона характеризуются средней и пониженной открытой пористостью и пониженной и низкой межзерновой проницаемостью.

Распределение ФЕС гранулярных коллекторов юрских отложений арктических районов Западно-Сибирской и Хатангско-Вилюйской нефтегазоносных провинций следующее (рис. 1).

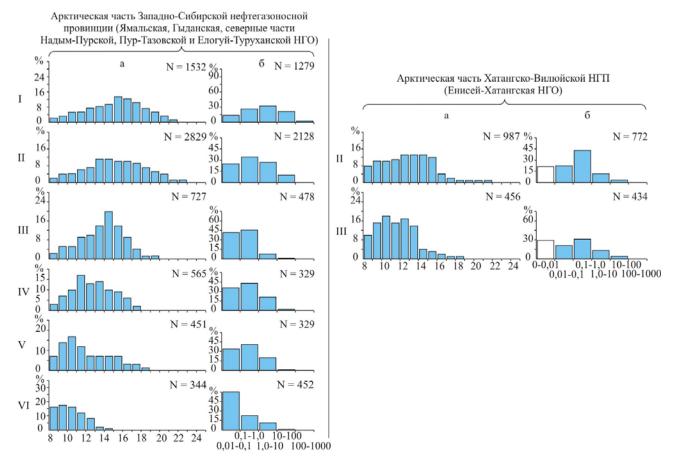


Рис. 1. Графики распределения:

a) открытой пористости (%); δ) межзерновой проницаемости (1 х 10^{-3} мкм 2) гранулярных коллекторов оксфордского (I), батского (II), аален-байосского (III), тоарского (IV), плинсбахского (V) и геттанг-синемюрского (VI) региональных резервуаров сибирского сектора Арктики

В первом Западно-Сибирском районе наибольшими значениями открытой пористости и межзерновой проницаемости обладают гранулярные коллекторы оксфордского и батского, меньшими – аален-байосского и тоарского и минимальными – плинсбахского и геттанг-синемюрского резервуаров. Их показатели открытой пористости и межзерновой проницаемости изменяются в следующих пределах: оксфордский резервуар (от 8 до 28%, наиболее часто – от 12 до 19% и от 0.01 до 1690•10⁻³ мкм², наиболее часто – от 0.1 до 100•10⁻³ мкм²); батский резервуар (от 8 до 27%, наиболее часто – от 13 до 17% и от 0.01 до 214•10⁻³ мкм², наиболее часто – от 0.01 до 10•10⁻³ мкм²); аален-байосский резервуар (от 8 до 20%, наиболее часто – от 11 до 17% и от 0.01 до 98•10⁻³ мкм², наиболее часто - от 0.01 до 1•10⁻³ мкм²); тоарский резервуар (от 8 до 18%, наиболее часто – от 10 до 15% и от 0.01 до 81•10⁻³ мкм²); наиболее часто - от 0.01 до 10⁻³ мкм²);

плинсбахский резервуар (от 8 до 19%, наиболее часто – от 9 до 15% и от 0.01 до $73 \cdot 10^{-3}$ мкм², наиболее часто - от 0.01 до $1 \cdot 10^{-3}$ мкм²) и геттанг-синемюрский резервуар (от 8 до 15%, наиболее часто – от 8 до 11% и от 0.01 до $62 \cdot 10^{-3}$ мкм², наиболее часто - от 0.01 до $0.1 \cdot 10^{-3}$ мкм²).

Фильтрационно-емкостные свойства коллекторов юрских отложений Хатангско-Вилюйской НГП изучены существенно меньше, чем выше описанного. Достаточно полная выборка анализов ФЕС имеется лишь для характеристики батского и аален-байосского региональных резервуаров (см. рис. 1). Их показатели открытой пористости и межзерновой проницаемости изменяются в следующих пределах: батский резервуар (от 8 до 22%, наиболее часто – от 8 до 16% и от 0.01 до 90•10⁻³ мкм², наиболее часто - от 0.01 до 10•10⁻³ мкм²); ааленбайосский резервуар (от 8 до 20%, наиболее часто – от 8 до 16% и от 0.01 до $60 \cdot 10^{-3}$ мкм², наиболее часто - от 0.01 до $1 \cdot 10^{-3}$ мкм²). То есть первый региональный резервуар, залегающий стратиграфически выше второго, как и в первой нефтегазоносной провинции имеет более высокие значения фильтрационно-емкостных свойств коллекторов. Другие менее изученные региональные резервуары этой нефтегазоносной провинции характеризуются такой же тенденцией уменьшения ФЕС с увеличением глубины их залегания. Отмечается четкая статистическая связь увеличения показателей их проницаемости по мере возрастания значений открытой пористости.

Таким образом, фильтрационно-емкостные свойства коллекторов региональных резервуаров юрских отложений рассматриваемого региона уменьшаются сверху вниз по разрезу от более молодых к более древним.

Закономерности изменения фильтрационно-емкостных свойств коллекторов

Приведенные выше материалы свидетельствуют о том, что ФЕС гранулярных коллекторов региональных резервуаров нефти и газа рассматриваемого региона зависит от глубины их залегания. Чем глубже залегают отложения резервуаров, тем более низкими значениями открытой пористости и межзерновой проницаемости они обладают. Отмеченная закономерность четко выражена на графиках распределения емкостных и фильтрационных свойств коллекторов в интервалах глубин от 2000 до 6000 м с шагом 500 м Западно-Сибирского и от 1500 до 4500 м с шагом 500 м Хатангско-Вилюйского арктических районов приведена на рис. 2.

Наиболее часто значения открытой пористости коллекторов региональных резервуаров в отмеченных интервалах глубин первого района изменяются соответственно: от 11 до 20, от 10 до 17, от 9 до 17, от 8 до 16, от 8 до 14, от 8 до 13, от 8 до 10 и от 8 до 9 %, а второго — от 8 до 22, от 8 до 18, от 8 до 16, от 8 до 16, от 10 до 16 и от 8 до 14 %.

Следовательно, сверху вниз по разрезу в рассматриваемых арктических районах пористость коллекторов юрских отложений на каждые 1000 м углубления уменьшается на 2-2,5 %. Начиная с глубины 4500 м их открытая порис-

тость не превышает 12-13 %, а глубже 5000-5500 м коллектора имеют пористость близкую к их граничному значению.

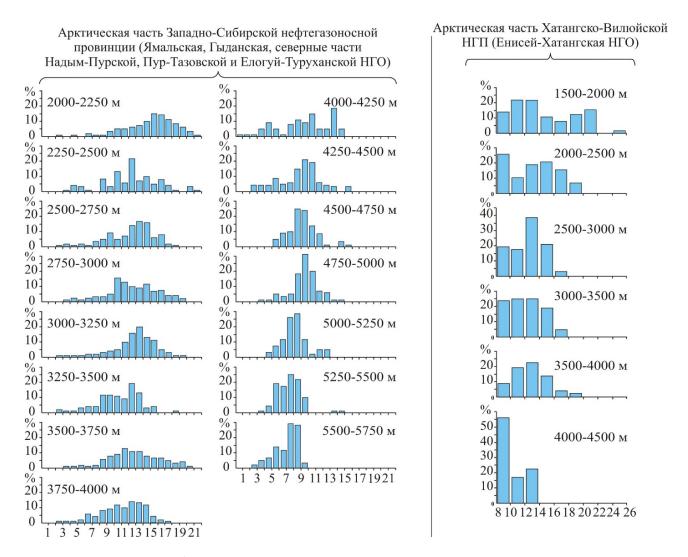


Рис. 2. Графики распределения значений открытой пористости проницаемых комплексов юрских региональных резервуаров Ямальской, Гыданской, Енисей-Хатангской и северных частей Надым-Пурской, Пур-Тазовской и Елогуй-Туруханской НГО по интервалам глубин

Гранулярная проницаемость коллекторов юрских региональных резервуаров рассматриваемого региона также испытывает тенденцию уменьшения ее значений сверху вниз по разрезу (рис. 3). Средние значения проницаемости коллекторов Западно-Сибирской НГП в интервале глубин 2000-5750 м с шагом 250 м соответственно равны: (8.15, 3.22, 3.81, 2.10, 2.32, 1.07, 0.95, 0.78, 0.67, 0.41, 0.39, 0.38, 0.39, 0.19 и 0.17) $\cdot 10^{-3}$ мкм²; а Хатангско-Вилюйской НГП в интервалах глубин 2000-2250, 2750-3000, 3000-3250, 3250-3500, 3500-3750, 3750-4000, 4000-4250 м соответственно равны: (2.68, 2.43, 1.52, 1.16, 1.23, 0.94 и 0.69) $\cdot 10^{-3}$ мкм².

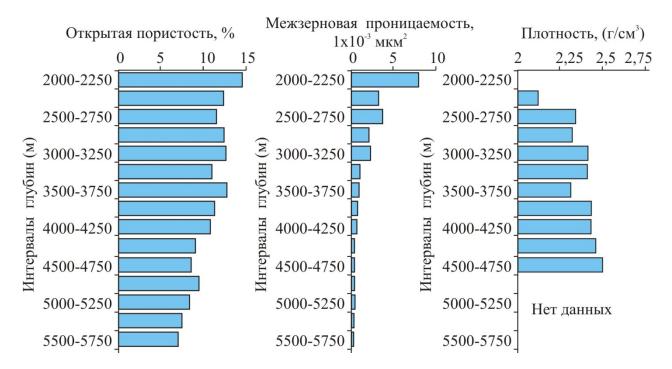


Рис. 3. Графики распределения средних значений открытой пористости (%), межзерновой проницаемости ($1 \times 10^{-3} \text{ мкм}^2$) и плотностей песчаников (г/см³) по интервалам глубин юрских отложений сибирского сектора Арктики

Следовательно, в исследуемом регионе и проницаемость коллекторов юрских региональных резервуаров уменьшается сверху вниз по разрезу от среднего ее значения $(2.68-8.15) \cdot 10^{-3}$ мкм² на глубине 2000-2550 м до $(0.67-0.69) \cdot 10^{-3}$ мкм² на глубине 4000-4250 м.

Понижение значений фильтрационно-емкостных свойств терригенных коллекторов с увеличением глубины их залегания обусловлено многими факторами, причем главным из них является уплотнение пород за счет горного давления [2, 4]. Применительно к исследуемым коллекторам юрских региональных резервуаров рассматриваемого региона отмеченная закономерность также в основном контролируется величиной горного давления и значительно меньше другими причинами: генезисом отложений (морские образования характеризуются большими значениями проницаемости, чем континентальные), размером зернистости (средне-крупнозернистые песчаники по сравнению с мелкозернистыми разностями имеют более высокие показатели ФЕС), содержанием цемента и т.д. (см. рис. 3).

Заключение

В результате проведенных исследований получены следующие основные результаты. Гранулярные коллектора юрских отложений арктических районов Западно-Сибирской и Хатангско-Вилюйской НГП в целом характеризуются средней и пониженной открытой пористостью, а также пониженной и низкой

межзерновой проницаемостью. Среди региональных резервуаров наибольшими значениями ФЕС обладают коллектора оксфордского и батского, меньше — аален-байосского и тоарского и минимальными плинсбахского и геттанг-синемюрского региональных резервуаров.

Фильтрационно-емкостные свойства гранулярных коллекторов региональных резервуаров зависят от глубины их залегания. Чем глубже залегают отложения резервуаров, тем более низкими значениями открытой пористости и межзерновой проницаемости они обладают. Пористость коллекторов юрских отложений на каждые 1000 м углубления разреза уменьшается на 2-2.5 %. Начиная с глубины 4500 м их открытая пористость не превышает 12-13 %, а глубже 5000-5500 м коллектора имеют пористость близкую к их граничному значению. Проницаемость коллекторов уменьшается сверху вниз по разрезу от интервала среднего его значения (2.68-8.18) •10⁻³мкм² на глубине 2000-2550 м до (0.67-0.69) •10⁻³мкм² на глубине 4000-4250 м. Понижение значений фильтрационно-емкостных свойств коллекторов с увеличением глубины их залегания обусловлено многими факторами, причем главным из них является уплотнение пород за счет горного давления.

Таким образом, в арктических нефтегазоносных областях Западно-Сибирской и Хатангско-Вилюйской НГП наилучшими ФЕС обладают гранулярные коллектора юрских отложений, залегающие на глубинах до 2,5-3 км. Вниз по разрезу их качество относительно постепенно уменьшается и на глубинах свыше 5-5,5 км этот тип коллектора практически не развит. Результаты выполненных исследований будут использованы при прогнозе качества коллекторов малоизученных нефтегазоносных областей и количественной оценке их перспектив нефтегазоносности.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Девятов В. П., Казаков А. М., Шурыгин Б. Н. Результаты и проблемы стратиграфии нефтегазоносных нижне-среднеюрских отложений Сибири // Геология и проблемы поисков новых крупных месторождений нефти и газа в Сибири. Новосибирск: 1996. Ч. 1. С. 68-72.
- 2. Добрынин В. М. Деформации и изменения физических свойств коллекторов нефти и газа. М.: Недра, 1970. 239 с.
- 3. Геология нефти и газа Западной Сибири / Конторович А. Э., Нестеров И. И., Салманов Ф. К., Сурков В. С., Трофимук А. А., Эрвье Ю. Г. // М.: Недра, 1975. 680 с.
- 4. Павлова Н. Н. Деформационные и коллекторские свойства горных пород. М.: Недра, 1975. 240 с.
- 5. Шемин Г. Г. Региональные резервуары нефти и газа юрских отложений севера Западно-Сибирской провинции. Новосибирск: Изд-во СО РАН, 2014 г. 362 с.

© Г. Г. Шемин, Н. В. Первухина, 2019