DOI: 10.33764/2618-981X-2019-1-2-48-54

# ОПРЕДЕЛЕНИЕ ТОЧНОСТНЫХ ХАРАКТЕРИСТИК ГРАВИТАЦИОННОГО ПОЛЯ ЗЕМЛИ ДЛЯ ЦЕЛЕЙ АВТОНОМНОЙ НАВИГАЦИИ

#### Снежана Евгеньевна Якимова

Сибирский государственный университет геосистем и технологий, 630108, Россия, г. Новосибирск, ул. Плахотного, 10, магистрант кафедры космической и физической геодезии, e-mail: sneg96.69@mail.ru

### Ирина Геннадьевна Ганагина

Сибирский государственный университет геосистем и технологий, 630108, Россия, г. Новосибирск, ул. Плахотного, 10, кандидат технических наук, доцент, зав. кафедрой космической и физической геодезии, e-mail: gam0209@yandex.ru

Рассматриваются результаты сравнения составляющих уклонений отвесной линии, полученных с помощью данных глобальных моделей гравитационного поля Земли и в результате наземных (астрономо-геодезических) измерений на территории Новосибирской области.

**Ключевые слова:** характеристики гравитационного поля Земли, уклонения отвесной линии, глобальная модель геопотенциала, автономная навигация.

# DETERMINATION OF ACCURACY CHARACTERISTICS OF THE EARTHS GRAVITATIONAL FIELD FOR THE PURPOSES OF AUTONOMOUS NAVIGATION

# Snezhana E. Yakimova

Siberian State University of Geosystems and Technologies, 10, Plakhotnogo St., Novosibirsk, 630108, Russia, Graduate, Department of Space and Physical Geodesy, e-mail: sneg96.69@mail.ru

### Irina G. Ganagina

Siberian State University of Geosystems and Technologies, 10, Plakhotnogo St., Novosibirsk, 630108, Russia, Ph. D., Associate Professor, Head of Department of Space and Physical Geodesy, e-mail: kaf.astronomy@ssga.ru

The article discusses the results of comparing the component deviations of a plumb line obtained with using data from global models of the Earth's gravitational field and as a result of ground-based (astronomic-geodesic) measurements in the territory of the Novosibirsk Region.

**Key words:** characteristics of the gravitational field of the Earth, plumb line deviations, global geopotential model, autonomous navigation.

## Введение

Научное и практическое решение проблем повышения точности характеристик гравитационного поля Земли (ГПЗ) состоит в разработке новых методов, технологий, систем и средств для автономной навигации.

Разработка оперативных и экономически оправданных методов определения уклонения отвесных линий (УОЛ) является одной из актуальных задач геодезии, картографии, гравиметрии, спутникового мониторинга, авиации и мореходства, баллистики, а также для задач военных целей.

Точность выработки координат подвижного объекта навигационным комплексом, работающим на основе использования инерциальной навигационной системы (ИНС) определяется, в частности, погрешностями учета составляющих ускорения силы тяжести по осям координат ИНС и погрешностью учета уклонения отвесных линий.

Для обеспечения автономной навигации информация об ускорении силы тяжести и уклонении отвесных линий может быть получена в виде цифровых моделей этих параметров, построенных по результатам предварительной высокоточной и подробной гравиметрической съемки или в результате определения характеристик ГПЗ по данным современных глобальных моделей геопотенциала [1–4].

Целью исследования является рассмотрение результатов сравнения составляющих уклонений отвесной линии, полученных с помощью данных глобальных моделей гравитационного поля Земли и в результате астрономо-геодезических измерений на территории Новосибирской области.

# Методы определения составляющих УОЛ

Уклонение отвесной линии — это угол между направлением вектора силы тяжести и нормалью к эллипсоиду в заданной точке. В геодезии используют две составляющие уклонения отвесной линии:

- уклонение отвесной линии в плоскости меридиана ξ;
- уклонение отвесной линии в плоскости первого вертикала η.

Полное уклонение отвесной линии и может быть вычислено по формуле:

$$u = \sqrt{\xi^2 + \eta^2} \,. \tag{1}$$

Разложение потенциала притяжения в ряд по сферическим функциям – наиболее традиционный способ представления гравитационного поля Земли.

Глобальные модели геопотенциала представляют в виде разложения геопотенциала в ряд Фурье по системе сферических функций геоцентрических координат — геоцентрического радиуса-вектора r, широты  $\varphi$ , и долготы  $\lambda$ , ограниченной степенью N [5, 6]:

$$V(\varphi,\lambda,r) = \frac{fM}{r} \left[ 1 + \sum_{n=2}^{N} \left( \frac{a_e}{r} \right)^n \cdot \sum_{m=0}^{n} \left( \overline{C}_{nm} \cos m\lambda + \overline{S}_{nm} \sin m\lambda \right) \cdot P_{nm} \left( \sin \varphi \right) \right], \quad (2)$$

где fM — геоцентрическая гравитационная постоянная;

 $a_e$  – экваториальный радиус Земли;

r – радиус вектор точки наблюдения ( $\phi$ ,  $\lambda$ , r);

 $\overline{C}_{nm}$  и  $\overline{S}_{nm}$  — безразмерные нормированные гармонические коэффициенты геопотенциала степени n и порядка m;

 $P_{nm}(\sin\phi)$  – присоединенные функции Лежандра.

Для вычисления составляющих уклонения отвесной линии используются гармонические коэффициенты возмущающего потенциала  $\left(\Delta \overline{C}_{nm}, \Delta \overline{S}_{nm}\right)$ , получаемые путем вычитания гармонических коэффициентов нормального поля из гармонических коэффициентов геопотенциала.

Методика определения составляющих уклонений отвесной линии  $\xi$ ,  $\eta$  на астрономических пунктах расположенных в точке с полярными пространственными координатами  $\varphi$ ,  $\lambda$ , r осуществляется по следующим формулам [4]:

$$\eta'' = - \left[ fM \sum_{n=2}^{N_0} \frac{a_e^n}{r^{n+1}} \sum_{m=0}^n m \left( -\Delta \overline{C}_{nm} \sin m\lambda + \Delta \overline{S}_{nm} \cos m\lambda \right) \cdot \overline{P}_{nm} \sin \varphi \right] \cdot \sec \varphi \cdot \frac{\rho''}{N}; (3)$$

$$\xi'' = -\left[ fM \sum_{n=2}^{N_0} \frac{a_e^n}{r^{n+1}} \sum_{m=0}^n \left( \Delta \overline{C}_{nm} \cos m\lambda + \Delta \overline{S}_{nm} \sin m\lambda \right) \cdot \frac{d\overline{P}_{nm} (\sin \varphi)}{d\varphi} \right] \cdot \frac{\rho''}{M}, \tag{4}$$

где  $\rho$ " = 206 265;

 $\Delta \overline{C}_{nm} = \overline{C}_{nm} - \overline{C}_{nm}^0$  — разность нормированных коэффициентов сферических функций реального и нормального поля силы тяжести;

 $\overline{C}_{nm}^0$  — коэффициенты нормального поля силы тяжести (например, общеземного эллипсоида WGS-84);

N – радиус-кривизны в первом вертикале;

M – радиус-кривизны в меридиане.

Полярные пространственные координаты  $\varphi$ ,  $\lambda$ , r для каждого определяемого пункта преобразуют из геодезических координат B, L, H общеземного эллипсоида WGS-84.

Радиусы-кривизны в первом вертикале и меридиане вычисляют по формулам:

$$N = \frac{a}{\sqrt{1 - e^2 \cdot \sin^2 B}}; \qquad M = \frac{a \cdot (1 - e^2)}{\left(\sqrt{1 - e^2 \cdot \sin^2 B}\right)^3}.$$
 (5)

В формулах (5) a и e — большая полуось и эксцентриситет общеземного эллипсоида WGS-84 [7—9].

# Результаты

Для вычисления характеристик ГПЗ использована информация, которая содержится в наборе гармонических коэффициентов глобальной модели геопотенциала EIGEN-6C4. Эта модель опубликована на сайте Международного центра глобальных моделей геопотенциала Земли [10].

В результате вывода модели EIGEN-6C4 получен полный набор гармонических коэффициентов геопотенциала до 2190-й степени. Как следствие, точность модели зависит от погрешностей определения гармонических коэффициентов и от предельной степени учитываемых сферических гармоник [11, 12].

На каждом пункте Лапласа на территории Новосибирской области выполнены определения геодезических координат B, L, H в государственной системе СК-95 [13, 14].

Геодезические координаты пунктов Лапласа преобразованы в общеземную координатную систему отсчета WGS-84. Преобразование координат выполнено согласно стандарту Справочного документа «Параметры Земли 1990 года» (ПЗ-90.11) [15].

С помощью программного обеспечения, используя данные глобальной модели EIGEN-6C4, вычислены составляющие абсолютных уклонений отвесных линий (отнесенных к эллипсоиду WGS-84) в плоскости меридиана и первого вертикала на каждом пункте Лапласа ( $\xi_{WGS-84}$  и  $\eta_{WGS-84}$ ).

Составляющие абсолютных уклонений отвесных линий в плоскости меридиана и первого вертикала  $\xi_{WGS-84}$  и  $\eta_{WGS-84}$ , полученные по формулам (3), (4), преобразуют в составляющие относительных уклонений отвесных линий в плоскости меридиана и первого вертикала по формулам:

$$\xi_{CK-95}^{"MOD} = \xi_{WGS-84}^{"} + (B_{WGS-84} - B_{CK-95})";$$
 (6)

$$\eta''^{MOD}_{CK-95} = \eta''_{WGS-84} + \left(L_{WGS-84} - L_{CK-95}\right)'' \cdot \cos\left(B_{WGS-84}\right). \tag{7}$$

Разности составляющих уклонений отвеса, вычисленных по формулам (6), (7) и полученных из астрономо-геодезических измерений на исследуемой территории, получают по формуле [16–19]:

$$\Delta \xi'' = \xi''_{CK-95}^{MOD} - \xi''_{CK-95}, \Delta \eta''_{CK-95}^{MOD} - \eta''_{CK-95}.$$
 (8)

Основные условия оценки точности определения составляющих уклонений отвесной линии на исследуемой территории по данным современной глобальной модели гравитационного поля Земли для целей автономной навигации можно сформулировать следующим образом:

— разность между вычисленным значением уклонения отвесной линии в плоскости меридиана ( $\xi$ ) и измеренным на пункте должна быть менее 1 угловой секунды:

$$\left|\Delta \xi''\right| < 1"; \tag{9}$$

– разность между вычисленным значением уклонения отвесной линии в плоскости первого вертикала (η) и измеренным на пункте должна быть менее 1 угловой секунды:

$$\left|\Delta \eta''\right| < 1''. \tag{10}$$

Для визуализации полученных результатов разностей составляющих уклонений отвесной линии  $\Delta \xi$ " и  $\Delta \eta$ " построены картосхемы, представленные на рис. 1, 2.

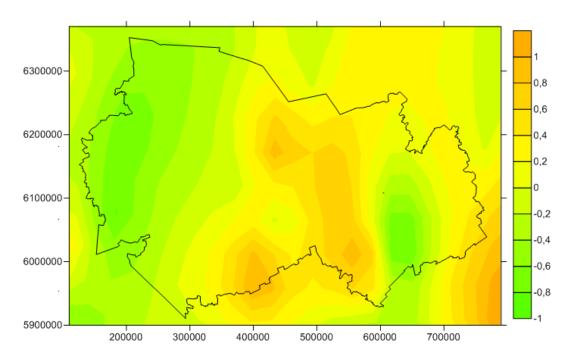



Рис. 1. Разности УОЛ в плоскости меридиана на территории Новосибирской области

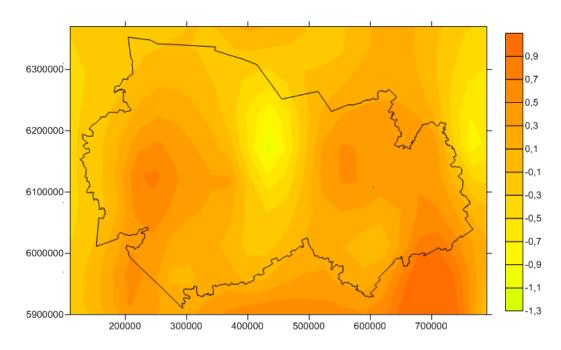



Рис. 2. Разности УОЛ в плоскости первого вертикала на территории Новосибирской области

Анализируя полученные результаты, можно сделать следующие выводы:

- на территории Новосибирской области значения УОЛ в плоскости меридиана, полученные по данным современной глобальной модели гравитационного поля Земли, имеют расхождения с наземными измерениями в пределах ±1";
- на территории Новосибирской области значения УОЛ в плоскости меридиана, полученные по данным современной глобальной модели гравитационного поля Земли, имеют расхождения с наземными измерениями в целом в пределах  $\pm 1$ ", но имеется одно значение -1,3";
- необходимо провести анализ результатов наземных измерений и выполнить отбраковку данных.

#### Заключение

На конкретном практическом примере определены значения составляющих уклонений отвесной линии, на территории Новосибирской области. Значения УОЛ, полученные по данным современной глобальной модели гравитационного поля Земли, имеют расхождения с наземными измерениями в пределах -1,3".

Результат работы может в дальнейшем послужить для создания функционально полной, высокотехнологичной и эффективной системы обеспечения координатно-навигационного обеспечения территории современными средствами геодезической, гравиметрической и навигационной информацией в цифровом виде.

### БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Возможности коррекции инерциальных навигационных систем на основе гравиметрических карт земли / В. В. Попадьёв, А. И. Сорока, А. И. Полубехин, В. Ю. Цыганков, С. Г. Брайткрайц, Р. Н. Акиншин, А. В. Хрущев // Научный вестник МГТУ. 2015. № 222.
- 2. Пешехонов В. Г. Современное состояние и перспективы развития гироскопических систем // Гироскопия и навигация. -2011. N = 1. C. 3 16.
- 3. Селиванова Л. М., Шевцова Е. В. Инерциальные навигационные системы : учеб. пособие.— М. : Изд-во МГТУ им. Н. Э. Баумана, 2012.-46 с.
  - 4. Фридлендер  $\Gamma$ . О. Инерциальные системы навигации. М. : Физ-матгиз, 1961. 156 с.
- 5. Огородова Л. В., Шимбирев Б. П., Юзефович А. П. Гравиметрия. М. : Недра, 1978.-325 с.
  - 6. Шимбирев Б. П. Теория фигуры Земли. M. : Недра, 1975. 432 c.
- 7. Селезнёв В. П. Основы космической навигации. Изд. 3-е. М. : Книжный дом «Либроком», 2013.-480 с.
- 8. Jekeli C. Accuracy Requirements in Position and Attitude for Airborne Vector Gravimetry and Gradiometry // Gyroscopy and Navigation. 2011. Vol. 2, No. 3. P. 164–169.
- 9. Задача авиационной гравиметрии. Некоторые результаты испытаний / Ю. В. Болотин, А. А. Голован, П. А. Кручинин, Н. А. Парусников, В. В. Тихомиров, С. А. Трубников // Вестник Московского университета. Сер. 1. Математика. Механика . −1999. № 2. С. 36–41.
- 10. International Centre for Global Earth Models (ICGEM) [Электронный ресурс]. Режим доступа: http://icgem.gfz-potsdam.de/.

- 11. Современные глобальные модели гравитационного поля Земли и их погрешности / В. Н. Конешов, В. Б. Непоклонов, Р. А. Сермягин, Е. А. Лидовская // Гироскопия и навигация. -2013.- № 1.- C. 107-118.
- 12. Исследование современных глобальных моделей гравитационного поля Земли : монография / В. Ф. Канушин, А. П. Карпик, И. Г. Ганагина, Д. Н. Голдобин, А. М. Косарева, Н. С. Косарев. Новосибирск : СГУГиТ, 2015. 270 с.
- 13. ГОСТ Р 51794-2008. Глобальные навигационные спутниковые системы. Системы координат. Методы преобразования координат определяемых точек. М. : Стандартинформ,  $2009.-19~\mathrm{c}.$
- 14. Руководство пользователя по выполнению работ в системе координат 1995 года (СК-95). ГКИНП (ГНТА)-06-278-04. М.: ЦНИИГАиК, 2004.
- 15. Параметры Земли 1990 (ПЗ 90.11). Справочное руководство. М. : Научно-исследовательский центр топогеодезического и навигационного обеспечения «27 ЦНИИ» Минобороны России, 2014.-52 с.
- 16. Кащеев Р. А. Современные методы спутниковой гравиметрии : конспект лекций. Казань : Казан. ун-т, 2015. 45 с.
- 17. Сарайский Ю. Н. Геоинформационные основы навигации : учебное пособие. СПб. : СПбГУГА, 2010. 245 с.
- 18. Лысенко Л. Н. Наведение и навигация баллистических ракет. М. : Изд-во МГТУ им. Н. Э. Баумана, 2007. 669 с.
- 19. Непоклонов В. Б. Методики определения составляющих уклонений отвесных линий и высот квазигеоида по гравиметрическим данным // Гравиметрия и геодезия. М. : Научный мир, 2010. С. 455–464.

© С. Е. Якимова, И. Г. Ганагина, 2019