МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ»

ГЕО-СИБИРЬ-2010

T. 5

Специализированное приборостроение, метрология, теплофизика, микротехника, нанотехнологии

ч.1

Сборник материалов VII Международного научного конгресса

> Новосибирск СГГА 2010

Ответственные за выпуск:

Кандидат технических наук, профессор,

директор Института оптики и оптических технологий СГГА, Новосибирск О.К. Ушаков

Доктор технических наук, профессор,

зав. лабораторией лазерных информационных систем CO РАН, Новосибирск *Б.В. Поллер*

Доктор технических наук, профессор, директор Конструкторско-технологического института научного приборостроения СО РАН, Новосибирск

Ю.В. Чугуй

Доктор технических наук, профессор, зав. кафедрой метрологии, стандартизации и сертификации СГГА, Новосибирск

В.Я. Черепанов

Доктор технических наук, профессор, зав. кафедрой физики СГГА, Новосибирск B.B. Чесноков

С26 ГЕО-Сибирь-2010. Т. 5. Специализированное приборостроение, метрология, теплофизика, микротехника, нанотехнологии. Ч. 1: сб. матер. VI Междунар. научн. конгресса «ГЕО-Сибирь-2010», 19–29 апреля 2010 г., Новосибирск. – Новосибирск: СГГА, 2010. – 216 с.

ISBN 978-5-87693-376-8 (т. 5, ч. 1) ISBN 978-5-87693-371-3

В сборнике опубликованы материалы VI Международного научного конгресса «ГЕО-Сибирь-2010» направления «Специализированное приборостроение, метрология, теплофизика, микротехника, нанотехнологии».

Печатается по решению Редакционно-издательского совета СГГА Материалы публикуются в авторской редакции

УДК 681.2:006:62:53:001

СОДЕРЖАНИЕ

Родионов А.И., Савелькаев С.В., Сырецкий Г.А., Рыков А.А., Юрьев Г.С. динамика пассивной виброзащитной системы с обратной связью для оптического и оптико-электронного приборостроения
Лебедев Н.С., Смирнова Е.С. Расчет погрешностей волоконно-оптического
гироскопа
Высокоразрешающая система наблюдения крупногабаритных изделий
Рахимов Н.Р. Рефлектометрический метод определения каналов утечки
информации в волоконно-оптических линиях связи21
Рахимов Н.Р., Исаев М.П. Расчет объема железнодорожных цистерн для
применения оптоэлектронного датчика-зонда влажности27
Рафаилович А.С. Оценка эффективности применения микросканирования в
высокочувствительных телевизионных системах на основе
электронно-оптических преобразователей
Журов Г.Е., Цивинский М.Ю. Применение парадигмы
высокопроизводительных реконфигурируемых вычислительных
систем для построения тракта обработки изображения в
тепловизионных и многоканальных приборах
Турбин А.В., Алдохин П.А. Малогабаритный тепловизор на базе
линейчатого фотоприемного устройства
Парко В.Л. Тенденции развития серийных астрономических рефракторов
нефтегазовое производство47
Кистерева М.Н. О точности измерений оптическими и оптико-
электронными приборами52
Кринёва А.В., Малинин В.В., Назаренко А.И. Информационное
обеспечение системы компьютерного моделирования приборов
ночного видения
Грицкевич Е.В., Звягинцева П.А., Урбанский О.В. Виртуальный
испытательный стенд для исследования оптико-электронных систем 60
Рахимов Б.Н., Ушаков О.К., Расулов А.М. Расчет и разработка
семиканальной волоконно-оптической системы для обнаружения,
регистрации зарождения и распространения усталостных трещин
элементов механических конструкций64
Рахимов Н.Р., Алижанов Д.Д. Приемники оптического излучения на основе
полупроводниковых пленок с аномальным высоким фотонапряжением
70
Рахимов Н.Р., Сатволдиев И.А. Применение современных лазерных диодов
для создания оптрона открытого канала
Кремис И.И., Федоринин В.Н., Тымкул В.М. Применение медианной
фильтрации в процедуре визуализации тепловизионного изображения,

формируемого матричными крт фотоприемниками	. 78
Касаткин И.В. Компьютерное моделирование тепловизионных	
изображений	. 82
Мордвин Н.Н. Подавление работы тепловизионных систем	
длинноволнового диапазона на основе неохлаждаемой	
микроболометрической матрицы	. 88
Егоренко М.П., Ефремов В.С. Двухспектральный объектив с двумя	
	95
Пальчикова И.Г., Смирнов Е.С., Боев Н.П., Омельянчук Л.В., Аюпов Б.М	
Каманина Н.В. Изучение характеристик современных	•••
поляризационных пленок для целей микроскопии	INN
Тымкул В.М., Тымкул Л.В., Фесько Ю.А. Тепловизионный метод	100
измерения линейных размеров трехмерных объектов	107
Южик И.Б. Импульсные эоп с цифровым управлением	112
Соболев В.С., Щербаченко А.М., Харин А.М. Применение активной	
лазерной интерферометрии с частотной модуляцией для оценки	
наноперемещений и нановибросмещений диффузно отражающих	110
объектов	
Парко В.Л., Хацевич Т.Н. Апохроматический объектив без использования	
особых стекол	125
Бессмельцев В.П., Афанасьев Д.М., Голышевский Н.В., Максимов М.В.	
Оптическая схема синтезатора биочипов на основе цифровой матрии	
микрозеркал1	
Шойдин С.А. К вопросу синтеза голограмм отдельными голографически	МИ
решётками 1	137
Голицын А.А. Телевизионный прицел для стрелкового оружия с	
автоматическим измерителем дальности и баллистическим	
вычислителем	139
Ковалев А.М. О дифракционной глубине фокуса на схематических модел	IЯХ
глаза	
Федоринин В.Н., Паулиш А.Г. Поляризационно-оптические приборы для	L
измерения физических величин1	148
Корольков В.П., Шиманский Р.В., Насыров Р.К., Конченко А.С. Оптическ	сий
профилометр на базе микроинтерферометра МИИ-4 и его калибровн	кa
	151
Рахимов Н.Р., Ушаков О.К., Рахимов Б.Н. Двумерный координатно-	
чувствительный приемник оптического излучения на основе пленок	c
аномальным фотонапряжением 1	157
Пен Е.Ф., Русаков Р.М. Экспериментальные исследования статистически	
характеристик изображений страниц данных в голографической	
памяти	61
Родионов М.Ю., Пен Е.Ф. Моделирование и экспериментальные	
исследования многослойных неоднородных объемных	
голографических решеток1	67
Критинина С.В. Развитие способов обработки линз 1	
r	. •

Кузнецов М.М., Комбаров М.С. Система технического зрения	.179
Перминов В.П. К вопросу о магниетермическом получении щелочных	
металлов	. 181
Ушаков О.К., Рахимов Н.Р., Ларина Т.В., Кутенкова Е.Ю., Плиско В.А.	
Физические основы применения оптоэлектронного метода с	
использованием световодов для контроля качественных параметро	В
металлических поверхностей	. 186
Рахимов Н.Р., Кутенкова Е.Ю., Ларина Т.В., Петров П.В., Мадумаров Ш	Ι.И.
Оптоэлектронный метод анализа физико-химических параметров	
нефти и нефтепродуктов	. 192
Кузнецов М.М., Кузнецова Д.А. Система менеджмента качества	
предприятия. Пути совершенствования	. 199
Кузнецов М.М. О теории прикладного цветового моделирования	. 201
Кузнецов М.М. Контроль оптических деталей методом псевдоцветового	0
аналогового кодирования	. 204
Кузнецов М.М., Комбаров М.С. О технологии на ФГУП по НПЗ	. 207
Алексеева З.Е., Воробьева Л.Б. Влияние дефектов поверхности пластин	НЫ
сегнетоэлектрического кристалла на дифракционную эффективнос	СТЬ
элемента оптической памяти	.212
Бобылева Е.Г. Интегрированные производственные системы в	
приборостроении	.215
Голиков Ю.А. Больше внимания профильным классам!	.219
Марач А.А. Становление организации производства в России	. 223

CONTENTS

Rodionov A.I., Savelkaev S.V., Syrecky G.A., Rykov A.A., Yurjev G.S.
Dynamics of the passive vibration isolation system with feedback for
optical and optoelectronic instrument-making
Lebedev N.S., Smirnova Ye.S. Errors calculation for fiber-optical gyroscope 14
Verkhogliad A.G., Gabrielyan V.V., Kalichkin S.V., Stupak M.F. High-resolution
system for large-sized articles observations
Rakhimov N.R. Reflectometric method for leak detection in fiber-optical
communication lines
Rakhimov N.R., Isayev M.P. Calculation of the tank-wagon capacity for
optoelectronic moisture probing sensor application
Rafailovich A.S. Evaluation of the using microscanners in high sensitive
television systems based on electro-optical transducers
Zhurov G.E., Tsivinsky M.Yu. Thermovision and multichannel image processing
systems based on high-performance reconfigurable computing (HPRC)
paradigm34
Turbin A.V., Aldokhin P.A. The compact infrared thermal imaging device based
on linear photodetector
Parko V.L. Development's tendencies of the serial astronomical refractors 42
Syretsky G.A. Multi-agent methodology and automated oil-and-gas manufacture
47
Kistereva M.N. On the accuracy of measurement by optical and optoelectronic
instruments52
Krinyova A.V., Malinin V.V., Nazarenko A.I. Dataware for the computer
simulation of night-vision devices56
Gritskevich Ye.V., Zvyagintseva P.A., Urbansky O.V. Virtual test desk for
optoelectronic systems research
Rakhimov B.N., Ushakov O.K., Rasulov A.M. Calculation and development of
the seven-channels fiber-optic system for detecting, birth recording and
distribution of the fatigue cracks in mechanical structures elements 64
Rakhimov N.R., Alizhanov D.D. Optical receivers on the basis of semiconductor
films with abnormally high photovoltage70
Rakhimov N.R., Satvodiyev I.A. Application of modern laser diodes for
developing open channel optical coupler
Kremis I.I., Fedorinin V.N., Tymkul V.M. Application median of the filtration in
procedure of visualization infrared of the image received with matrix
photodetectors
Kasatkin I.V. Computer modeling of thermal images
Mordvin N.N. The work suppression of infrared long wave systems on a basis of
uncooled microbolometer detector
Yegorenko M.P., Yefremov V.S. Two-spectral objective with two mangin mirrors
D11:1 LC G: X/G D ND O 1 11LV A DM
Palchikova I.G., Smirnov Ye.S., Boyev N.P., Omelyanchuk L.V., Ayupov B.M.,
Kamanina N.V. Exploring the characteristics of modern polarizing films for
microscopy

Tymkul V.M., Tymkul L.V., Fesko Y.A. Thermovision method of measuring
linear dimensions of three-dimensional objects
Juzhik I.B. Pulse electro-optical digital control converter
Sobolev V.S., Shcherbachenko A.M., Kharin A.M. Application of selfmixing
laser interferometry with frequency modulation for diffused scattering
objects nanodisplacements and nanovibration estimates
Parko V.L., Khatsevich T.N. Apochromatic objective without using special
glasses
Afanasiev D., Bessmeltsev V., Goloshevsky N., Maksimov M. Optical scheme
of biochip synthesizer based on digital micromirrors device
Shoydin S.A. Synthesis of holograms by discrete holographic arrays
Golitsyn A.A. Television sight with embedded rangefinder and ballistic
computer for small arms
Kovalev A.M. On diffractive depth-of-focus in schematic eye models 142
Fedorinin V.N., Paulish A.G. Polarization-optical devices for the measurements
of physical magnitudes148
Korolkov V.P., Shimansky R.V., Nasyrov R.K., Konchenko A.S. Optical
profilometer on the base of microinterferometer MII-4 and its calibration
Rakhimov N.R., Ushakov O.K., Rakhimov B.N. Two-dimensional coordinate-
sensitive optical receiver on the basis of anomalous photovoltage film 157
Pen E.F., Rusakov R.M. Experimental study of statistical characteristics of
images of data pages in holographic memory161
Rodionov M.Yu., Pen E.F. Modelling and experimental investigations of
multilayer non-uniform volume holographic gratings167
Kritinina S.V. Development of lense machining techniques
Kuznetsov M.M., Kombarov M.M. Computer vision system
Perminov V.P. Magnesium-thermal production of alkali metals
Ushakov O.K., Rakhimov N.R., Larina T.V., Kutenkova Ye.Yu., Plisko V.A.
physical principles of optoelectronic method application with light diodes
used for the control of metal surfaces qualitative parameters
Rakhimov N.R., Kutenkova Ye. YU., Larina T.V., Petrov P.V., Madumarov Sh.I.
Optoelectronic method used for the analysis of oil and oil products
physicochemical parameters
Kuznetsov M.M., Kuznetsova D.A. Enterprise quality management system.
Ways of improvement
Kuznetsov M.M. The theory of application colour modeling
Kuznetsov M.M. Control of optical details by false-colour analog encoding. 204
Kuznetsov M.M., Kombarov M.M. Technologies of Novosibirsk instrument-
making plant
Alekseeva Z.E., Vorobyeva L.B. Influence of segnetoelectric crystal plate
defects on the diffraction efficiency of optical memory elements
Bobyleva Ye.G. Integrated production systems in instrument-making
Golikov Yu.A. More attention to specialized classes!
Maratch A.A. Production management formation in Russia
$\boldsymbol{\varepsilon}$

УДК 628.517.4, 539.3. А.И. Родионов, С.В. Савелькаев, Г.А. Сырецкий СГГА, Новосибирск А.А. Рыков, Г.С. Юрьев НГТУ, Новосибирск

ДИНАМИКА ПАССИВНОЙ ВИБРОЗАЩИТНОЙ СИСТЕМЫ С ОБРАТНОЙ СВЯЗЬЮ ДЛЯ ОПТИЧЕСКОГО И ОПТИКО-ЭЛЕКТРОННОГО ПРИБОРОСТРОЕНИЯ

В докладе говорится о пассивном типе виброизоляторов с обратной связью, разработанных в НГТУ с участием сотрудников СГГА, обеспечивающих заметное повышение точности выполняемых операций в оптическом и оптикоэлектронном приборостроении и при эксплуатации изделий этой отрасли народного хозяйства. Известно, что в создании и эксплуатации изделий этих отраслей мешает множество помех. И в первую очередь вибрационных. Борьба с ними возможна путем виброизоляции прецизионного оборудования. Оно устанавливается на виброзащитные столы и платформы, опорами которых служат виброизоляторы. В нашем случае - модули квазинулевой жесткости проф. Г.С. Юрьева [1,2].. На их основе были созданы опытные и серийные прецизионные технологические виброзащитные платформы и другие системы не только для оптико-электронного приборостроения, но и для других отраслей народного хозяйства СССР и РФ, превосходящие по своим параметрам российские и зарубежные аналоги. В основу их работы положен эффект аномального роста гистерезисных потерь и снижения собственной частоты в модулях квазинулевой жесткости. Объяснение этому эффекту дал проф. А.И. Родионов [3].

A.I. Rodionov, S.V. Savelkaev, G.A. Syrecky SSGA, Novosibirsk A.A. Rykov, G.S. Yurjev NSTU, Novosibirsk

DYNAMICS OF THE PASSIVE VIBRATION ISOLATION SYSTEM WITH FEEDBACK FOR OPTICAL AND OPTOELECTRONIC INSTRUMENT-MAKING

The paper deals with the passive feedback vibration isolator developed in Novosibirsk State University with the participation of the researchers from the Siberian State Academy of Geodesy. The isolator provides higher operation accuracy in optical and optoelectronic instrument-making and in its products practical application. This industry production and operation processes are known to be interfered with numerous hindrances, mostly vibration. They may be prevented by the

precision equipment vibration isolation. The equipment is to be installed on the vibroprotective desk or platform with vibration isolator as a support, in this case, G.S. Yuryev's quasi-zero stiffness modulus. On the basis of these moduli the experimental and serial precision technological vibroprotective platforms and other systems were produced not only for optoelectronic instrument-making but also for other branches of the national economy of the USSR and Russia. As concerns the parameters they surpassed Russian and foreign analogues. Their operating principle is based on the effect of the anomalous hystereses loss growth and the eigenfrequency decrease in quasi-zero stiffness moduli. The effect was explained by professor A.I. Rodionov.

Развитие технологий оптоэлектронном новых В оптическом И приборостроении связано с повышением точности выполняемых операций, таких как совмещение, позиционирование, обработка деталей, осуществляются на прецизионных установках. Точность операций иногда достигает 0.01 мкм и превосходит уровень фоновой вибрации. Последняя вызывается движением транспорта, работой виброактивных машин и агрегатов и проявляется в виде перемещения фундаментов прецизионного оборудования. Уровень этих помех может превосходить точность операций в десятки раз.

Борьба с помехами возможна путем виброизоляции прецизионного оборудования: оно устанавливается на виброзащитные столы и платформы, опорами которых служат виброизоляторы. Однако множество их конструкций не удовлетворяет современным требованиям.

Современная концепция повышения эффективности виброизоляции многих объектов включает создание нелинейно-упругих элементов, систем регулирования их жесткости и несущей способности, устранение конструкционного трения и введение оптимального демпфирования. Жесткость элементов в этих устройствах можно регулировать и уменьшать целесообразно условиям эксплуатации, обеспечивая собственную частоту в 1 Гц и меньше.

Однако использование упругих подвесов с минимальной жесткостью

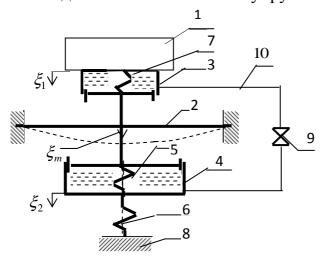


Рис. 1. Схема упругого подвеса

означает и более высокую их чувствительность к эксплуатационным изменениям нагружения, т.е. большие перемещения и "уход" с оптимальной рабочей точки нелинейной статической характеристики.

Решение этой проблемы состоит во введении управляемой обратной связи по нагрузке упругой подвески. В данном исследовании, в отличие от многих разработок активной виброзащиты, рассматриваемая упругая подвеска по существу остается пассивной и сохраняет высокую эффективность защиты, а управление

несущей способностью ее (положением рабочей точки) осуществляется с помощью гидравлического рычага, без внешних источников энергии (рис. 1).

На рис. 1 показана схема упругого подвеса [1]. Защищаемый объект 1 опирается на нелинейно-упругий модуль квазинулевой жесткости 2 и пружину 6 посредством цилиндров 3 и 4. Полости цилиндров соединены каналом 10 со встроенным дросселем 9. Цилиндро-поршневые пары 3 и 4 содержат также упругие элементы 7 и 5 вспомогательного нагружения. Расчетное положение объекта (рабочую точку) устанавливают, изменяя натяг пружины 6.

Устройство работает следующим образом. При увеличении, например, веса объекта повышается давление в гидроцилиндре 3, и начинается переток жидкости в гидроцилиндр 4, расширяется его объем и увеличивается натяг пружины 6. Благодаря этому рабочую точку подвеса (положение рессоры) можно удержать на прежнем уровне. Время перетекания жидкости при этом должно быть существенно больше периода колебаний объекта на подвеске и регулируется величиной проходного сечения канала дросселя.

Данная система имеет две степени свободы. Возьмем в качестве обобщенных координат: ξ_1 - отсчитываемую от положения равновесия защищаемого объекта массы m, y - координату определяющую положение частиц жидкости. Тогда уравнение движения объекта 1 при кинематическом возмущении основания, запишется так

$$m\ddot{\xi}_{1} = -k_{1}\xi_{M} - k_{3}\xi_{M}^{3} - c_{3}\xi_{2} - b\dot{\xi}_{1} + A_{e}m\omega^{2}\sin(\omega \cdot t), \quad (1)$$

где k_1 , k_3 — коэффициенты упругой характеристики рессоры 2, $\xi_{_{M}}$ — ее максимальный прогиб, $A_{_e}$, ω — амплитуда и частота колебания основания 8, c_3 -коэффициент жесткости пружины 6, b — коэффициент вязкого трения (на рис.1 демпфер вязкого трения не показан), ξ_2 -перемещение цилиндра 4.

Запишем уравнение движения жидкости с учетом ее инертности [4]:

$$\alpha_1 \cdot \ddot{y} + \alpha_2 \cdot \dot{y} = P_1 - P_2. \quad (2)$$

Здесь $\alpha_1 = 1.2 \cdot \rho \cdot l$, $\alpha_2 = 32 \cdot \mu \cdot l/d^2$; ρ , μ - соответственно, плотность и динамический коэффициент вязкости жидкости; l, d – длина и диаметр трубки, соединяющей полости двух цилиндров.

Учтем перемещение цилиндра 4 при условии, что массой поршней и цилиндров пренебрегаем:

$$P_2 \cdot S_2 = c_3 \cdot \xi_2 + c_2 \cdot (\xi_2 - \xi_M),$$
 (3)

где c_2 – жесткость вспомогательной пружины 5, и условие сохранения массы жидкости при перетекании

$$S_1 \cdot (\xi_1 - \xi_M) = S_2 \cdot (\xi_2 - \xi_M) = S \cdot y$$
. (4)

Здесь S_1 , S_2 , S_3 - соответственно площади верхнего, нижнего цилиндров и сечения трубки.

Условие возвращения рессоры в рабочую точку при статическом перетекании жидкости ($\ddot{y} = 0$, $\ddot{\xi}_1 = 0$) дает уже первые ограничения на параметры системы. После дополнительного нагружения системы массой m1 рессора

получает перемещение $\xi_{M0} = m_1 \cdot g / (c_3 + k_1)$. Возвращение рессоры в рабочую точку в этом случае будет описываться уравнением

$$\dot{\xi}_{M} + B \cdot \xi_{M} = D, \quad (5)$$
где
$$B = \frac{S \cdot c_{3}}{\alpha_{2} \cdot S_{2} \cdot (k_{1} + c_{3})} \cdot (\frac{k_{1} + c_{3}}{S_{1}^{2} \cdot c_{3}} \cdot S_{2} + \frac{k_{1}}{S_{2}} + \frac{k_{1} + c_{3}}{c_{3} \cdot S_{2}^{2}} \cdot c_{2}),$$

$$D = \frac{m_{1} \cdot g \cdot S \cdot c_{3}}{\alpha_{2} \cdot S_{2}} \cdot (\frac{1}{S_{2}} + \frac{c_{2}}{S_{2} \cdot c_{3}} - \frac{1}{S_{1}} + \frac{c_{1} \cdot S_{2}}{c_{3} \cdot S_{1}^{2}})$$

Чтобы $\xi_{_{M}} \to 0$ при $t \to \infty$, достаточно потребовать D=0. как следует из (5), выразим $c_{_{2}}$

$$c_2 = -c_1 \cdot \frac{S_2^2}{S_1^2} - c_3 \cdot \frac{S_1 - S_2}{S_1} \,. \tag{7}$$

Перепишем систему уравнений (1) - (4) с учетом (7):

$$\ddot{\xi}_{1} = -a_{11} \cdot \xi_{1} + a_{12} \cdot y - \frac{k_{3}}{m} \cdot (\xi_{1} - y \cdot \frac{S}{S_{1}})^{3} - 2 \cdot n \cdot \dot{\xi}_{1} - A_{e}\omega^{2} \sin(\omega \cdot t), \quad (8)$$

$$\ddot{y} = -b_{21} \cdot \dot{y} - b_{22} \cdot y + b_{23} \cdot \xi_{1} + \frac{k_{3}}{\alpha_{1} \cdot S_{1}} \cdot (\xi_{1} - y \cdot \frac{S}{S_{1}})^{3}. \quad (9)$$

$$3 \text{Десь } a_{11} = \frac{k_{1} + c_{3}}{m}, \quad a_{12} = \frac{S}{S_{1} \cdot m} \cdot (k_{1} - c_{3} \cdot \frac{S_{1} - S_{2}}{S_{2}}), \quad b_{21} = \alpha_{2} / \alpha_{1}$$

$$b_{22} = \frac{S}{\alpha_{1} \cdot S_{1}^{2}} \cdot (k_{1} - c_{3} \cdot \frac{S_{1} - S_{2}}{S_{2}}), \quad b_{23} = b_{22} \cdot \frac{S_{1}}{S_{1}}, \quad n = \frac{b}{2 \cdot m} \quad (10)$$

Рассмотрим свободные колебания системы. Присоединим к массе m груз массой m_1 и отпустим без начальной скорости. Пусть вначале рессора имеет линейную характеристику, а вязкое трение отсутствует $k_3 = 0$, b = 0. Тогда из (7) и(8) получим, что свободные колебания системы будут описываться системой уравнений:

янении:

$$\ddot{\xi}_1 = -a_{11} \cdot \xi_1 + a_{12} \cdot y + \frac{m_1 \cdot g}{m + m_1},$$

$$\ddot{y} = -b_{21} \cdot \dot{y} - b_{22} \cdot y + b_{23} \cdot \xi_1$$
(11)

Здесь при вычислении коэффициентов a_{11} , a_{12} следует вместо m положить $m+m_1$.

Заметим, что исследование на устойчивость решения требует, чтобы

$$S_2 > \frac{c_3 \cdot S_1}{k_1 + c_3} \quad (12)$$

Варьируя коэффициенты в уравнениях (11), можно получить различный характер затухания свободных колебаний системы.

Возьмем, в качестве примера, параметры системы, при которых $a_{11} = 47.62$, $a_{12} = 0.249$, $b_{21} = 12.32$, $b_{22} = 10.91$, $b_{23} = 555.56$ (13)

Процесс возвращения рессоры в рабочую точку и перемещение объекта массой m с дополнительным грузом m_1 показаны на рис. 2. На экспоненциальную кривую накладываются колебания с частотой

 $\lambda = \frac{1}{2 \cdot \pi} \sqrt{\frac{k_1 + c_3}{m_1 + m}} = 1.1$ Гц. Через 10 сек рессора возвращается в рабочую точку, $\xi_{\scriptscriptstyle M} = 0$. Колебания объекта с грузом затухают за то же время, но уже около нового положения ± 0.15 см.

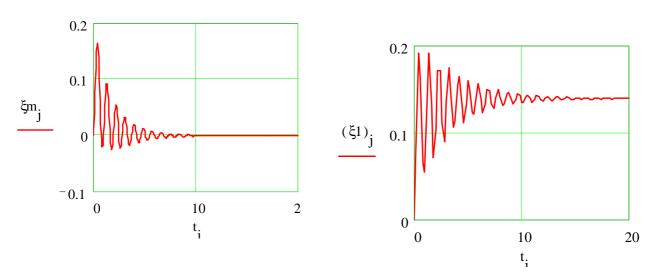


Рис. 2. Свободные колебания рессоры и объекта. Здесь амплитуда измеряется *см*

Ускорить затухание колебаний можно, например, при следующей совокупности коэффициентов уравнений (рис. 3)

$$a_{11} = 47.62$$
, $a_{12} = 0.157$, $b_{21} = 22.387$, $b_{22} = 97.268$, $b_{23} = 1.223 \cdot 10^4$.

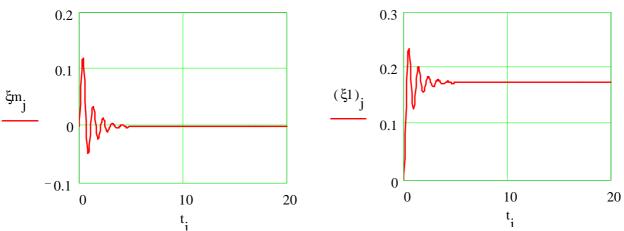


Рис. 3. Свободные колебания рессоры и объекта (амплитуда в см)

При параметрах системы:

$$\begin{split} S_1 &= 20 \cdot 10^{-4} \, \text{m}^2, \ S_2 = 1.5 \cdot 10^{-2} \, \text{m}^2, \ c_1 = 0 \,, \ c_3 = 22 \cdot 10^3 \, \frac{\textit{h}}{\textit{m}} \,, \ k_1 = -17 \cdot 10^3 \, \frac{\textit{h}}{\textit{m}} \,, \\ d &= 0.45 \cdot 10^{-2} \, \, \text{m}, \ l = 8 \cdot 10^{-2} \, \, \text{m}, \ m = 100 \, \, \text{kg}, \ m_1 = 5 \, \, \text{kg}. \end{split}$$

В качестве рабочей жидкости используется индустриальное масло ИГП-18 [5], у которого динамический коэффициент $\mu = 1.496 \cdot 10^{-2}~\Pi a \cdot c$, а плотность $\rho = 880~\frac{\kappa c}{M^3}$.

Исследования вынужденных колебаний данной системы подтверждает целесообразность применения нелинейной характеристики рессоры и

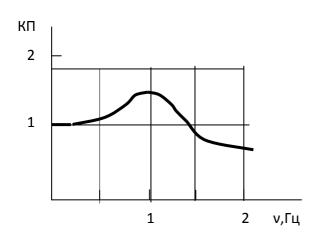


Рис. 4. Коэффициент передачи при кинематическом воздействии

дополнительного демпфирования. Например, при амплитуде колебаний основания $A_e = 2 \cdot 10^{-2}$ м и коэффициентах $n = 2.5 \quad 1/c, \quad a \quad k_3 = 2 \cdot 10^7 \quad \frac{H}{M^3}$, AЧX,

n = 2.5 1/c, $a k_3 = 2.10^7 \frac{n}{M^3}$, AЧX, вычисленная по формулам (9) - (11), отвечает поставленной задаче (рис. 4).

предложенный Таким образом, нелинейно-упругий подвес, в котором жесткость упругих элементов номинальной нагрузке минимальна обеспечивает высокий эффект виброзащиты При этом перестройка "рабочей точки" упругого подвеса на фактическую нагрузку выполняется автоматически.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Пат. 2093730 РФ, МКИ6 F16F 13/00. Виброзащитная платформа / Г.С. Юрьев // Изобретения. 1992.
- 2. Пат. 1155803 РФ, МКИ6 F16F 13/00; F16F 3/02. Амортизатор./ Г.С. Юрьев // Изобретения. 1993.
- 3. Родионов А.И.. Прецизионные технологические виброзащитные платформы для оптического и оптико-электронного приборостроения / А.И. Родионов, Г.С. Юрьев // Сб. матер. 4-го Международного научного конгресса "ГЕО-Сибирь-2008" (22-24 апреля 2008) том 4, ч.1 "Специализированное приборостроение, метрология, теплофизика, микротехника" Новосибирск: Изд-во СГГА, 2008. С.86 90.
- 4. Исследование работы вибратора с жидкостным фильтром / О.В. Безызвестных, И.Б. Цесарский, Г.С. Юрьев // В кн.: Методы, средства и метрологическое обеспечение испытаний изделий. М., МДТП, 1985. С.75-81.
- 5. Станочные гидроприводы: Справочник / В.К. Свешников, А.А. Усов М.: Машиностроение, 1985 г. 352 с.

© А.И. Родионов, С.В. Савелькаев, Г.А. Сырецкий, А.А. Рыков, Г.С. Юрьев, 2010

УДК 681.7.068 *Н.С. Лебедев, Е.С. Смирнова* СГГА, Новосибирск

РАСЧЕТ ПОГРЕШНОСТЕЙ ВОЛОКОННО-ОПТИЧЕСКОГО ГИРОСКОПА

В данной работе рассмотрены причины возникновения основных погрешностей волоконно-оптического гироскопа, выполнен расчет значений погрешностей и предложены методы их минимизации.

N.S. Lebedev, Ye.S. Smirnova SSGA, Novosibirsk

ERRORS CALCULATION FOR FIBER-OPTICAL GYROSCOPE

The causes responsible for the basic fiber-optical gyroscope errors are considered. The errors values have been calculated and the methods of their minimization are presented.

Рассмотрены и рассчитаны четыре вида основных погрешностей, возникающих из-за: изменения угла поляризации; влияния температурных градиентов; влияния дробовых шумов; влияния рэлеевского рассеивания.

При расчете погрешностей использованы следующие параметры ВОГ, константы и обозначения:

- Длина волны лазерного источника света λ =1.55 мкм.;
- Число витков в контуре N=318;
- Диаметр волоконного контура D=1м;
- Длина волокна L=1000м;
- Скорость света в вакууме $c = 3 \cdot 10^8$ м /с;
- Коэффициент ослабления, обусловленный рэлеевским рассеиванием α_S =0.002;
- Коэффициент направленного рассеивания вдоль волокна G=1; линейный угол вода излучения волоконного сердечника $\beta=0.1$ рад.;
- Показатель преломления сердцевины волокна n=1.48; постоянная напряженности магнитного поля Земли H=40~A/M;
 - Постоянная Верде V_{λ} =2.6 ⋅10⁻⁶ рад./А;
 - Угол поворота плоскости поляризации $\gamma = \pi/3$;
- Полоса пропускания частот системы обнаружения и обработки сигнала Δf = 10 $\Gamma \mu$.;
 - Частота излучения $f=1.77 \cdot 10^{14} \, \Gamma$ ц;
 - Мощность лазера Р= 1 мВт;
 - Постоянная Планка h=6.626·10⁻³⁴Дж/сек;

- Изменение температуры между начальным моментом работы ВОГ и конечным, по сечению катушки контура ΔT =0.001°C;
- Изменение показателя преломления при изменении температуры волокна $dn/dT = 11.1 \cdot 10^{-6}$;
 - Коэффициент линейного расширения опто-волокна α = 1⋅10 ⁻⁶ °C.

Причиной погрешности, возникающей из-за изменения угла поляризации, является влияние магнитного поля Земли. Расчет этой погрешности (ψ) проводится по формуле, приведенной в [2]

$$\psi = \mathbf{2} \cdot V_{\lambda} \cdot H \cdot L \cdot \sin \gamma, \quad (1)$$

$$\psi = \mathbf{2} \cdot 2.6 \cdot 10^{-6} \cdot 40 \cdot 1000 \cdot 0.0183 = 0.003806 \, \mathrm{pag}. \quad (2)$$

Расчет погрешности, возникающей из-за влияния температурных градиентов, выполняется по формуле, приведенной в [1]. Причиной ее возникновения являются: механические напряжения в волокне и случайные временные изменения температуры окружающей среды. Используя заданные для ВОГ данные произведем расчет этой погрешности (θ_T):

$$\theta_{\rm T} = \frac{n \cdot L^2 \cdot \Delta T}{24 \cdot N \cdot S} \cdot \left(\frac{dn}{dT} + n \cdot \alpha\right), \quad (3)$$

$$\theta_{\rm T} = \frac{1.48 \cdot 10^6 \cdot 10^{-3}}{24 \cdot 318 \cdot 1.57} \cdot \left(0.75 \cdot 10^{-5} \cdot 1.48 + 1.48 \cdot 10^{-6}\right) = 0.0015 \cdot 10^{-3} {\rm pag}$$

Дробовый шум появляется лишь в присутствии полезного оптического сигнала на входе фотодетектора и обусловлен случайным распределением скорости прихода фотонов на фотодетектор, что приводит к случайным флуктуациям тока фотодетектора. Расчет этой погрешности выполняется по формуле, приведенной в [1]

$$\begin{split} &\Delta\Omega = \frac{c^2}{2\pi \cdot f \cdot L \cdot D} \cdot \sqrt{\frac{h \cdot f \cdot \Delta f}{0.5 \cdot P}}\,, \quad (5) \\ &\Delta\Omega = \frac{2.02^2 \cdot 10^{16} \cdot 1.53 \cdot 10^{-8}}{6.28 \cdot 1.77 \cdot 10^{14} \cdot 1000 \cdot 1} \cdot \sqrt{\frac{6.626 \cdot 10^{-34} \cdot 1.77 \cdot 10^{14} \cdot 1}{0.5 \cdot 10^{-8}}} = 0.56 \cdot 10^{-9} \text{рад/сек} \end{split}$$

Погрешность, возникающая из-за релеевского рассеивания, обусловлена переотражением света на микро частицах и неоднородностях среды распространения. Когерентная составляющая обратного рассеивания и шумы отражения суммируются векторно с противоположно бегущими лучами, что приводит к ошибке в разности фаз. Расчет этой погрешности с использованием заданных данных по формуле, приведенной в [3]

иных данных по формуле, приведенной в [5]
$$\Omega = \frac{\lambda \cdot c}{2 \cdot N \cdot (\pi \cdot D)^2} \cdot \beta \cdot \sqrt{G \cdot \alpha_S \cdot L}, \quad (7)$$

$$\Omega = \frac{1.55 \cdot 10^{-6} \cdot 2.02 \cdot 10^8 \cdot 0.14}{2 \cdot 318 \cdot 9.8596} = 0.007 \, \text{pag/cek}. \quad (8)$$

Считая, что погрешности случайны, можно найти среднеквадратичную погрешность волоконно-оптического гироскопа. Что касается погрешностей, возникающих из-за релеевского рассеиванияч $\Omega = 0.007 \, ^{\mathrm{pag}}/_{\mathrm{cek}}$ и из-за

влияния дробового шума $\Delta\Omega = 0.56 \cdot 10^{-9} \, \mathrm{pag/cek}$. То они вносят погрешность в виде изменения угла в единицу времени. Считая, что измерения производятся один раз в секунду, то погрешность выражается в изменении угла в течение одной секунды. Среднеквадратичная погрешность прибора.

$$\delta = \sqrt{\psi^2 + \theta_T^2 + \Delta\Omega^2 + \Omega^2}, \quad (9)$$

$$\delta = \sqrt{(0.003806)^2 + (0.0015 \cdot 10^{-3})^2 + (0.56 \cdot 10^{-9})^2 + 0.007^2} = 0.00796$$

Так как погрешности, возникающие из-за влияния дробового шума и влияния температурных градиентов на семь и четыре порядка меньше шумов, возникающих из-за изменения угла поляризации и рэлеевского рассеивания, ими можно пренебречь.

Таким образом наибольшие погрешности, возникают из-за поляризации и рэлеевского рассеивания.

Для уменьшения этих погрешностей предлагаются следующие способы:

- 1. Использование одномодового волокна, который сохраняет поляризацию в волокне.
 - 2. Установка поляризационного фильтра в контур.
- 3. Использовать опто-волокно с минимальным коэффициентом затухания не более 0.2дБ/км.
- 4. Использовать модулятор случайной фазы, размещенный в середине контура для того, чтобы декоррелировать шум обратного рассеяния.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Ионов, А.Д. Статистически нерегулярные оптические и электрические кабели связи [Текст]/А.Д. Ионов//Радио и связь. 1990. С. 110—155.
- 2. Гроднев, И.И. Волоконно-оптические линии связи [Текст] / И.И. Гроднев // Радио и связь 1990: учеб.пособие для вузов. 2-е изд., перераб. и доп./М. С. 144—200.
- 3. Чео, П.К. Волоконная оптика: Приборы и системы / Пер. с англ. Г.И. Литвиновой.Ю.Т. Ларина. [Текст] / П.К. Чео // Энергоатомиздат 1988 / M., C. 200-233.

© Н.С. Лебедев, Е.С. Смирнова, 2010

УДК 681.7:004.4 $A.\Gamma.$ Верхогляд¹, В.В. Габриэлян^{1,2}, С.В. Каличкин¹, М.Ф. Ступак^{1,2} ¹ КТИ НП СО РАН, ² НГУ, Новосибирск

ВЫСОКОРАЗРЕШАЮЩАЯ СИСТЕМА НАБЛЮДЕНИЯ КРУПНОГАБАРИТНЫХ ИЗДЕЛИЙ

Продумано и реализовано техническое решение по созданию системы видеонаблюдения для регистрации изображений объектов размером ~ 3×7 м2 с возможностью регистрации элементов объекта с размером ~ 0.1 мм при изменении расстояния до точек объекта в пределах 1 – 10 м. Результаты предварительных экспериментов показали возможность создания крупногабаритных наблюдения автоматической системы ДЛЯ объектов (характерный размер несколько десятков м2) с возможностью автоматического выделения элементов с характерным размером ~ 0.1 мм.

A.G. Verkhogliad¹, V.V. Gabrielyan^{1,2}, S.V. Kalichkin¹, M.F. Stupak^{1,2}

¹ Technological Design Institute of Scientific Instrument Engineering of Siberian Branch of the Russian Academy of Sciences (TDI SIE SB RAS), ² Novosibirsk State University (NSU), Novosibirsk, Russia

HIGH-RESOLUTION SYSTEM FOR LARGE-SIZED ARTICLES OBSERVATIONS

The technical solution on the creation of video-observation system for registration the objects' images of about 3×7 m2 with possible registration the object's elements with the dimension of 0.1mm under the measurement of distance up to the points of object within the limits of 1-10 m has been realized. The results of preliminary experiments have shown the capability of automatic system creation for observation the large-sized objects of some tens of m2 with possibility of automatic marking of elements with character dimension of 0.1 mm.

1. Введение

При изготовлении крупногабаритных прецизионных (характерный размер ~ 10 м) изделий зачастую необходимо решить задачу видеонаблюдения их поверхности с высоким пространственным разрешением в реальном времени. Это необходимо, в первую очередь, для контроля технологического процесса. При этом необходимо на всей поверхности изделия отслеживать детали с характерным размером ~ 0.1 мм. Задача усложняется тем, что в ходе технологического процесса изделие изменяет свое пространственное положение, а система видеонаблюдения остается неподвижной. В ходе выполнения данной работы ставилась задача поиска технического решения по созданию системы видеонаблюдения для регистрации изображений объектов

размером $\sim 3\times7~\text{m}^2$ с возможностью регистрации элементов объекта с размером $\sim 0.1~\text{мм}$ при изменении расстояния до точек объекта в пределах 1-10~м. Время обзора поверхности не должно превышать 4~сек.

2. Требования к системе видеонаблюдения

2.1.Выбор фотокамеры

На рис. 1 приведено схематическое изображение наблюдаемого объекта.

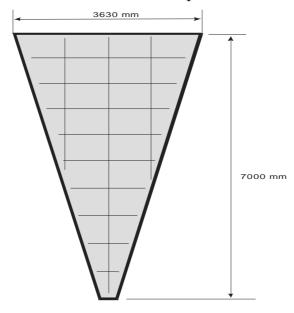


Рис. 1. Схематическое изображение наблюдаемого объекта с разбиением на области покадровой съемки

Размер поля зрения фотокамеры – D на объекте, в некотором направлении, задается выражением:

$$D = d \times L/f, \tag{1}$$

где d – размер матрицы фотокамеры в данном направлении, L – расстояние до элемента объекта, f – фокусное расстояние объектива фотокамеры.

При заданном минимальном размере Δx разрешимого на объекте элемента поле зрения равно:

$$D = \Delta x \times n, \tag{2}$$

где n — число пикселей матрицы фотокамеры в данном направлении. Учитывая требования по быстродействию (из них следует, что размер поля зрения должен быть не менее $800\,$ мм \times $600\,$ мм), получим следующие параметры матрицы видеокамеры:

Размер матрицы, мм	22.3×14.9
Число эффективных пикселей, шт.	15×10^{6}
Размер единичного пикселя, мкм	4.7×4.7

Таким требованиям удовлетворяет фотокамера CANON типа EOS 500D с объективом с переменным фокусным расстоянием, лежащим в пределах от 18 до 200 мм.

2.2. Разрешение объектива

При идеальной настройке на резкость, идеально рассчитанном и изготовленном (а сейчас большинство профессиональных объективов по своим характеристикам близко к теоретическому пределу) объективе размер минимально разрешимого элемента фотографируемого объекта на основании выражений (1), (2) получается следующим:

$$\Delta x = x_0 \times L/f$$
,

где Δx — минимальный размер разрешимого элемента, x_0 — характерный размер единичного пикселя, f — максимально возможное фокусное расстояние объектива. Подставив значения величин, получим, что наша видеокамера позволяет разрешать со 100% контрастностью элементы фотографируемого объекта, находящиеся на максимально большом расстоянии с размерами вплоть до 0.2 мм. При понижении контраста имеется возможность разрешения более мелких элементов.

2.3.Возможность компенсации геометрических искажений и "сшивки" отдельных кадров

Программное обеспечение системы обязано производить сшивку отдельных кадров в единый файл и обеспечивать компенсацию полученных геометрических искажений.

3. Результаты предварительных экспериментов и их обсуждение

При экспериментальной реализации поставленной задачи использовалась фотокамера CANON типа EOS 500D с объективом с переменным фокусным расстоянием в пределах от 18 до 200 мм. На рис. 2 приведен пример видеоизображения сетки, состоящей из линий шириной 0.1 мм, полученного с помощью выбранной фотокамеры с расстояния в 10 м.

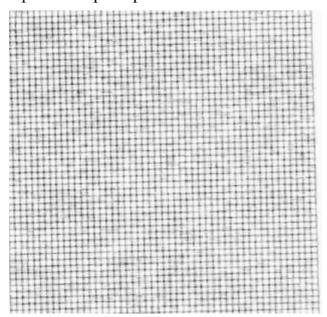


Рис. 2. Вид видеоизображения сетки с шириной линий 0.1 мм

Разработанное программное обеспечение позволило производить успешную сшивку отдельных кадров в единый файл данных. Ниже на рис. 3 приведен пример изображения поверхности, сшитый из 21 фрагмента.

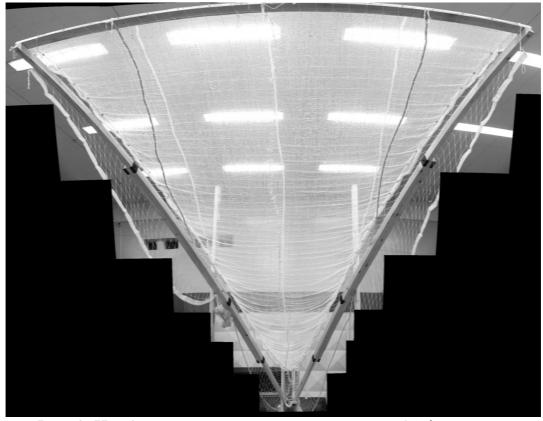


Рис. 3. Изображение поверхности, сшитое из 21 фрагмента

В настоящее время ведутся исследования с целью решения следующих задач:

- Устранение геометрических искажений на окончательном изображении;
- Разработка и изготовление автоматической системы определения расстояний до элементов наблюдаемого объекта;
- Повышение быстродействия системы (время съема и сшивки всех кадров менее 4 мин.).

Таким образом, результаты предварительных экспериментов показали возможность создания автоматической системы для наблюдения крупногабаритных объектов (характерный размер несколько десятков ${\rm M}^2$) с возможностью автоматического выделения элементов с характерным размером $\sim 0.1~{\rm MM}$.

4. Заключение

Продумано и реализовано техническое решение по созданию системы видеонаблюдения для регистрации изображений объектов размером ~ 3×7 м² с возможностью регистрации элементов объекта с размером ~ 0.1 мм при изменении расстояния до точек объекта в пределах 1 – 10 м. Результаты предварительных возможность экспериментов показали создания автоматической наблюдения крупногабаритных объектов системы ДЛЯ (характерный размер несколько десятков м²) с возможностью автоматического выделения элементов с характерным размером ~ 0.1 мм.

© А.Г. Верхогляд, В.В. Габриэлян, С.В. Каличкин, М.Ф. Ступак, 2010

УДК 681.327.68:778.38 *H.Р. Рахимов* СГГА, Новосибирск

РЕФЛЕКТОМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ КАНАЛОВ УТЕЧКИ ИНФОРМАЦИИ В ВОЛОКОННО-ОПТИЧЕСКИХ ЛИНИЯХ СВЯЗИ

В данной работе рассматривается рефлектометрический метод определения каналов утечки информации в волоконно-оптических линиях связи. Показано, что необходимость практического внедрения и эффективного использования защищенных ВОЛС в сетях связи является задачей сегодняшнего дня.

N.R. Rakhimov SSGA, Novosibirsk

REFLECTOMETRIC METHOD FOR LEAK DETECTION IN FIBER-OPTICAL COMMUNICATION LINES

The reflectometric method used for detecting leak in fiber-optical communication lines is considered. Introduction and practical use of the secure fiber-optical communication lines are proved to be the issue of the day.

Требования, предъявляемые К современным системам передачи информации, такие как высокая скорость передачи данных, защищенность от помех, высокая надежность и другие, приводят неоспоримому преимуществу волоконно-оптических линий связи (ВОЛС) перед любыми другими видами. В ближайшем будущем, и в России ВОЛС могут полностью заменить другие типы передачи данных в магистральных линия связи. В связи с широкой распространенностью волоконно-оптических линий связи возникают проблемы информационной безопасности при их эксплуатации. Изначально, ВОЛС имеют более высокую степень защищенности информации от несанкционированного доступа, чем какие либо другие линии связи. Это связано с физическими принципами передачи информации, которые основываются на модуляции света распространяющегося в оптическом волноводе [1-4]. Электромагнитное излучение оптического диапазона выходит за пределы волокна на расстояния не более длины волны (менее 2 мкм) при ненарушенном канале связи, поэтому в окружающем волновод пространстве отсутствуют поля на оптических частотах несущие информацию.

В современных системах ВОЛС основной способ передачи информации основан на модуляции интенсивности света. Это наиболее простой способ передачи информации по ВОЛС, поэтому каналы утечки информации напрямую связаны с интенсивностью светового потока. Волоконно-оптический кабель

представляет собой сложную конструкцию с несколькими слоями покрытия оптического волновода [2-3]. Параметры его таковы, что в окружающем кабель пространстве информативное оптическое излучение практически не создает каких-либо электромагнитных полей диапазона близкого к частоте модуляции. Вследствие этого для формирования канала утечки информации требуется с оптическим контакт каналом передачи оптоволокном. Это требование является одним из главных защищенности информации в волоконно-оптических системах передачи. Здесь мы будем обсуждать только формирование каналов утечки информации, основанное на оптическом контакте с оптоволокном без нарушения канала связи. Так же не обсуждаются возможности утечки информации на элементах волоконно-оптической линии связи в местах соединения, разветвления, ретрансляции и других, которые находятся под контролем специальных средств.

Пассивные угрозы направлены в основном на несанкционированное использование ВОЛС, не оказывая при этом влияния на ее функционирование.

Активные угрозы имеют целью нарушение нормального функционирования ВОЛС путем целенаправленного воздействия на ее компоненты. К активным угрозам относятся, например, нарушение работы линий связи, утечка информации (рис.1) и т.д.

Формирование каналов утечки информации из ВОЛС можно разделить на три типа, которые связанны с возможными особенностями распространения света в волоконно-оптических линиях связи. 1) За счет нарушение полного внутреннего отражения (НПВО). 2) Регистрация рассеянного излучения. 3) Параметрические методы регистрации проходящего излучения.

Первый способ несанкционированного доступа связан с отводом части светового потока из оптического волновода при НПВО. В идеальном случае свет не выходит из оптического волокна вследствие полного внутреннего отражения на его границах. Любые отклонения в распространении света приводят к выходу части излучения из волновода, которое образует канал утечки информации. Варианты формирования каналов утечки информации из ВОЛС при НПВО можно разделить по виду воздействия на оптоволокно:

- Механическое воздействие (например, изгиб волокна), когда локальная концентрация механических напряжений вызывает уменьшение угла падения света на границе, который может оказаться меньше предельного угла, и как следствие нарушение полного внутреннего отражения, т.е. часть светового потока выходит из оптоволокна;
- Оптическое туннелирование света, т.е. приведение в оптический контакт с волокном другого оптического волокна с показателем преломления равным или большим основного, что приводит к "захвату" части информационного светового потока без обратного рассеянного излучения;
- Специальные напыляемые покрытия и оптические смазки основного оптоволокна, которые приводят к эффекту интерференции света в тонких пленках, что позволяет выводить часть излучения также без обратного рассеяния;

- Воздействие стационарных электромагнитных полей, что вызывает изменение оптических свойств на границе сердцевина оболочка оптоволокна, которое приводит к нарушению полного внутреннего отражении;
- Современные оптические волноводы обладают очень маленькими потерями (вплоть до 0.2 дБ/км и менее на длине волны 1.55 мкм) – это информацию значительные передавать на расстояния необходимости усиления сигнала. Расстояния между участками ретрансляции составляет более 100 км, что требует генерации световых импульсов значительной мощности. Высокие мощности входного светового потока создают значительное по величине рассеяние на ближайших к ретрансляторам участках, которые можно использовать для формирования каналов утечки информации. Современные приемники оптического излучения позволяют регистрировать световые потоки состоящие практически из одного фотона с временным разрешением менее 1 нс, что соответствует регистрации оптической мощности излучения менее 10-10 Вт [5].

Рассеянное излучение позволяет сформировать каналы утечки информации, основанные на следующих физических принципах:

- Прямое измерение рассеянного излучения на длинах волн носителя информации;
 - Регистрация рассеянного излучения на комбинационных частотах;
- Специальная "обработка" оптоволокна внешними полями (тепловым, электромагнитным, радиационным), с целью увеличения интенсивности рассеянного излучения.

С помощью внешнего воздействия можно усилить потери в световоде на локальных участках формирования каналов утечки, что вызовет увеличение сигнала утечки.

Оптическое излучение, являющееся носителем информации, при распространении по оптоволокну вызывает изменение его физических свойств. Модуляцию свойств оптоволокна в зависимости от интенсивности световых импульсов можно регистрировать специальными высокочувствительными устройствами. Изменение свойств оптоволокна является основой для формирования канала утечки информации. Среди них можно выделить следующие параметры оптоволокна, модулируемые световым потоком:

- Показатель преломления;
- Показатель поглощения при прохождении света;
- Малые изменения геометрических размеров (фотоупругий эффект);
- Регистрация модуляции свойств поверхности волокна.

Существующая техника измерений позволяет регистрировать очень малые изменения свойств волокна. В частности, применение спектроскопии потерь позволяет регистрировать незначительное изменение показателя поглощения, которое вызывается информационным потоком света.

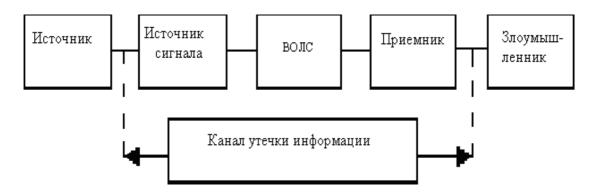


Рис. 1. Схема утечки информации по системе ВОЛС

В заключение отметим, что анализ возможных каналов утечки информации позволяет выявить критические по информационной безопасности места в волоконно-оптических линиях связи. Рассматриваемые каналы утечки информации требуют сложную и дорогую технику для их реализации злоумышленниками, но ценность государственной или коммерческой тайны может превысить стоимость затрат на технические средства доступа в эти каналы. В настоящем сообщении рассмотрены далеко не все аспекты формирования возможных каналов утечки. На основании проведенного анализа и дальнейших исследований, мы предполагаем обосновать соответствующие способы защиты информации в ВОЛС основанные как на физических принципах защиты информационного канала оптического волокна, так и на криптографических методах.

Основой системы фиксации несанкционированного доступа (НД) является система диагностики состояния (СДС) оптического тракта. СДС можно построить с анализом либо прошедшего через оптический тракт сигнала, либо отраженного сигнала (рефлектометрические СДС).

СДС с анализом прошедшего сигнала является наиболее простой диагностической системой. На приемной части ВОЛС анализируется прошедший сигнал. При НД происходит изменение сигнала, это изменение фиксируется и передается в блок управления ВОЛС.

При использовании анализатора коэффициента ошибок на приемном модуле ВОЛС СДС реализуется при минимальных изменениях аппаратуры ВОЛС, так как практически все необходимые модули имеются в составе аппаратуры ВОЛС. Недостатком является относительно низкая чувствительность к изменениям сигнала.

Основным недостатком СДС с анализом прошедшего сигнала является отсутствие информации о координате появившейся неоднородности, что не позволяет проводить более тонкий анализ изменений режимов работы ВОЛС (для снятия ложных срабатываний системы фиксации НСИ).

СДС с анализом отраженного сигнала (рефлектометрические СДС) позволяют в наибольшей степени повысить надежность ВОЛС.

Для измерения больших уровней отражения необходимо подключать рефлектометр к линии с помощью аттенюатора, который позволяет уменьшить

уровень сигнала с тем, чтобы отраженный сигнал не влиял на точность измерений.

Для контроля величины мощности сигнала обратного рассеяния в ОВ в настоящее время используется метод импульсного зондирования, применяемый во всех образцах отечественных и зарубежных рефлектометров (рис. 2).

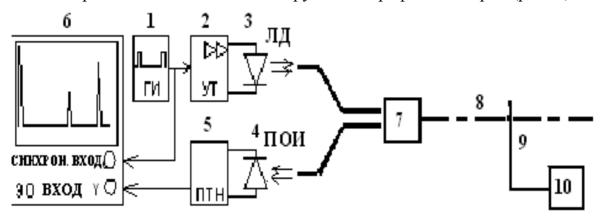


Рис. 2. Применение волоконно-оптического рефлектометра для определения каналов утечки информации в волоконно-оптических линиях связи

1 — генератор импульсов (ГИ); 2 — усилитель тока (УТ); 3 — лазерный диод (ЛД); 4 — приемник оптического излучения (ПОИ); 5 — преобразователь тока; 6 — осциллограф; 7 — Y-образный разветвитель; 8 — оптический кабель; 9 — механическое, оптическое или специальные воздействие на оптоволокно; 10 — устройство для прослушивания

Данное устройство работает следующим образом. В исследуемое ОВ вводится через ЛД мощный короткий импульс, который разрабатывает ГИ и усиливает УТ, и затем на этом же конце регистрируется излучение, рассеянное в обратном направлении на различных неоднородностях, по интенсивности которого можно судить о потерях в ОВ, распределенных по его длине на расстоянии до 100–120 км. Начальные рефлектограммы контролируемой линии фиксируются при разных динамических параметрах зондирующего сигнала в осциллографе и памяти компьютера и сравниваются с соответствующими текущими рефлектограммами. Локальное отклонение рефлектограммы более чем на 0,1 дБ свидетельствует о вероятности попытки несанкционированного доступа к ОВ в данной точке тракта.

Основными недостатками СДС с анализом отраженного сигнала на основе метода импульсной рефлектометрии являются следующие:

- При высоком разрешении по длине оптического тракта (что имеет важное значение для обнаружения локальных неоднородностей при фиксации НД) значительно снижается динамический диапазон рефлектометров и уменьшается контролируемый участок ВОЛТ,
- Мощные зондирующие импульсы затрудняют проведение контроля оптического тракта во время передачи информации, что снижает возможности СДС, либо усложняет и удорожает систему диагностики;

- Источники мощных зондирующих импульсов имеют ресурс, недостаточный для длительного непрерывного контроля ВОЛС;
- Специализированные источники зондирующего оптического излучения, широкополосная и быстродействующая аппаратура приемного блока рефлектометров значительно удорожает СДС.

Оптическое волокно в настоящее время считается самой совершенной физической средой для передачи информации, а также самой перспективной средой для передачи больших потоков информации на значительные расстояния. Основания так считать вытекают из ряда особенностей, присущих оптическим волноводам.

Эффективность систем защиты определяется как открытием новых, так и совершенствованием технологий НСИ, использующих уже известные физические явления.

С течением времени противник может освоить новые методы перехвата, потребуется дополнять защиту, что не свойственно криптографическим методам защиты, которые рассчитываются на достаточно длительный срок.

В заключение следует отметить, что необходимость практического внедрения и эффективного использования защищенных ВОЛС в сетях связи является задачей сегодняшнего дня.

Защита информации от утечки по ВОЛС - это комплекс организационных, организационно-технических и технических мероприятий, исключающих или ослабляющих бесконтрольный выход конфиденциальной информации за пределы контролируемой зоны.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Иванов, А.Б. Волоконная оптика: компоненты, системы передачи, измерения. [Текст]. М.: Компания Сайрус Системс, 1999.
- 2. Дональд Дж. Серлинг, младший. Техническое руководство по волоконной оптике. [Текст] М.: Лори, 1993.
 - 3. [Электронный ресурс]. Режим доступа: http://kunegin.narod.ru.
- 4. Берлин, Б.З. Волоконно-оптические системы связи на ГТС / Б.З. Берлин, А.С. Брискер, В.С. Иванов. М.: Радио и связь, 1994.
- 5. Спектральное уплотнение волоконно-оптических линий ГТС [Текст] / Брискер А.С., Гусев Ю.М., Ильин В.В. и другие // Электросвязью 1990. №1. С. 41-42.

УДК 681.586.5:621.384.3 *Н.Р. Рахимов, М.П. Исаев* СГГА, Новосибирск

РАСЧЕТ ОБЪЕМА ЖЕЛЕЗНОДОРОЖНЫХ ЦИСТЕРН ДЛЯ ПРИМЕНЕНИЯ ОПТОЭЛЕКТРОННОГО ДАТЧИКА-ЗОНДА ВЛАЖНОСТИ

В этой работе, заключены результаты исследования для косвенного определения объема нефти и нефтепродуктов. Представлены формулы для расчета объема железнодорожной цистерны. С помощью этих формул были произведены расчеты, для двадцати типов цистерн.

N.R. Rakhimov, M.P. Isayev SSGA, Novosibirsk

CALCULATION OF THE TANK-WAGON CAPACITY FOR OPTOELECTRONIC MOISTURE PROBING SENSOR APPLICATION

In this work, concluded a study for the indirect method of determining the volume of crude oil and petroleum products. The formulas for calculating the volume of the railway tank. Using these formulas were calculated for the twenty types of tanks.

объема продуктов, нефти Определение жидких TOM числе нефтепродуктов железнодорожных цистернах является необходимым В условием при осуществление налива и слива, исходящего из требований учета, а также для определения содержания воды в нефти и нефтепродуктах, находящихся в цистернах. Определение воды должно быть достаточно точным, а процесс определения максимально простым и кратковременным, так как время, затрачиваемое на определение объема воды, входит в общий срок простоя железнодорожных цистерн.

Исходя из этих требований, на основе применения эффекта НПВО нами был разработан различные оптоэлектронные приборы, в том числе датчик-зонд [1,2] для измерения влажности и содержания воды в цистернах с нефтью и нефтепродуктами. Включающий в себя источники излучения, отражающую призму с измерительной гранью и фотоприемник.

Перед составлением калибровочной таблицы для железнодорожной цистерны необходимо определить его объем. Метод расчета по определению объема горизонтального резервуара разберем на примере. Найдем объем горизонтального трех поясного резервуара. Общий объем резервуара будет составлять:

$$v_{\text{общ}} = v_1 + v_2 + v_3 + 2v_{\text{шв}} + 2v_{\text{дн}} + v_{\text{под}} + v_{\Gamma}$$
 (1) где v_1, v_2, v_3 – объемы поясов резервуара;

 $v_{\rm mb}, v_{\rm дh}, v_{\rm nog}, v_{\rm r}$ – объем соответственно резервуара по шву, сферического днища, подковообразного тела, образующегося в пересечении горловины с цилиндром, и горловина цистерны.

Объемы поясов резервуара определяется по формулам:

$$v_{1} = \frac{\pi}{4} \left(\frac{S_{1}}{\pi} - 2\delta \right)^{2} l_{1} \quad (2)$$

$$v_{2} = \frac{\pi}{4} \left(\frac{S_{2}}{\pi} - 2\delta \right)^{2} (l_{2} - 2\delta) \quad (3)$$

$$v_{3} = \frac{\pi}{4} \left(\frac{S_{3}}{\pi} - 2\delta \right)^{2} l_{3} \quad (4)$$

где S_1 , S_2 , S_3 – наружные длины окружности;

 δ – толщина стенок корпуса резервуара;

 l_1, l_2, l_3 – длины отдельных поясов корпуса резервуара.

Объем резервуара, приходящийся на шов, рассчитывается по формуле

$$v_{\text{IIIB}} = \frac{\pi}{4} \left[\frac{S_1}{\pi} - 2(\delta + \delta_{\text{JH}}) \right]^2 b$$
 (5)

где $\delta_{\text{лн}}$ – толщина стенок днища,

b – ширина шва.

Объем ковкообразного тела определяется по формуле

$$v_{\text{под}} = \frac{4}{3}r^2(R_B - \sqrt{R^2 - r^2})$$
 (6)

где r – радиус горловины,

h – высота подковообразного тела (высота врезания),

 R_B — внутренний радиус резервуара.

Объем горловины определяется по формуле

$$v_{\Gamma} = \frac{\pi}{4} d^2 H \quad (7)$$

где d, H – внутренний диаметр и высота горловины.

Объем сферического днища складывается из объема шарового сегмента, сектора и усеченного конуса. Таким образом,

$$V_{\text{дH}} = V_{\text{CB.CET}} + V_{\text{CEK}} + V_{\text{VC.KOH}}$$
 (8)

Эти объемы определяют по формулам

$$v_{cb.cer} = \frac{1}{6}\pi \cdot f_{c\phi} (3r_c^2 + f_{c\phi}^2)$$
 (9)

$$v_{cek} = 0.001828r_B^2 l\beta'$$
 (10)

$$v_{yc.KOH} = \frac{1}{3}\pi h_K (r_c^2 + r_c r_K + r_K^2)$$
 (11)

где $f_{c\varphi}$ – внутренняя высота сферического сегмента;

 r_c – радиус большего основания усеченного конуса;

 $r_{\rm B}$ – внутренний радиус кривой сопряжения сегментной и секторной частей днища;

l – расстояние от центра тяжести горизонтального сектора до оси вращения;

$$\beta'$$
 – угол;

h_к – высота усеченного конуса;

 r_{κ} – радиус меньшего основания усеченного конуса.

Для составления калибровочных таблиц на горизонтальные резервуары с посантиметровым интервалом пользуются методом коэффициентов площадей

сегментов, сущность которого заключается в том, что при подсчете объема нефтепродукта в горизонтальных резервуарах пользуются постоянными таблицами коэффициентов, пригодными для любых размеров горизонтальных резервуаров [3]. Для этого имеются две таблицы: для цилиндрической части резервуаров и для сферических днищ.

Объем нефтепродукта в горизонтальном резервуаре со сферическим днищем находится по формуле:

$$V = k_{\text{цил}} v_{\text{цил}} + 2k_{\text{дн}} v_{\text{дн}} \quad (12)$$

где $k_{\text{цил}}$, $k_{\text{дн}}$ — табличный коэффициент соответственно для цилиндрической части и для сферических днищ резервуаров;

 $v_{\text{цил}}$, $v_{\text{дн}}$ — полный объем цилиндрической части резервуара и объем сферического днища.

При этом коэффициент $k_{дH}$ зависит от отношения высоты взлива H к внутреннему диаметру резервуара D. Коэффициент $k_{дH}$ находится по таблице в зависимости от двух величин: отношения H/D и отношения f/D (f- высота выноса сферического днища).

Объем нефтепродукта в горизонтальном резервуаре с плоским днищем определяется по формуле

$$V = \mathbf{k}_{\text{цил}} \mathbf{v}_{\text{цил}} \quad (13)$$

При составлении посантиметровой калибровочной таблицы, задаваясь значениями высоты взлива H через 1 см, каждый раз находят по таблицам коэффициенты $k_{\text{цил}}$, $k_{\text{дн}}$ и соответствующий объем заполнения горизонтального резервуара.

Во избежание ошибок при калибровке горизонтального резервуара все вычисления должны выполняться в определенной последовательности.

С помощью этих формул были произведены расчеты на ПК, для двадцати типов цистерн (рис. 1).

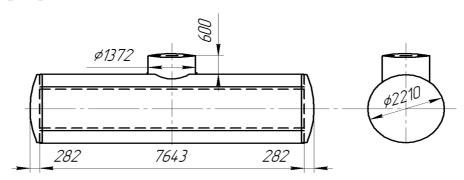


Рис. 1. Внешний вид цистерны (30 т)

Применяемый в настоящее время метод учета недостач и излишков при инвентаризации нефтепродуктов на нефтебазах с точностью до 1кг не обеспечивается измерительными средствами и не отражает фактического положения вещей [4]. Поэтому более правильно считать, что недостачи или излишки нефтепродуктов на нефтебазах бывают только в том случае, когда они

выходят за приделы возможной, вычисляемой в каждом отдельном случае, погрешности учета. В приведенном примере эта погрешность составляет $\pm 0.3\%$ от массы нефтепродукта, находящегося в резервуаре.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Рахимов, Н.Р. Оптический контроль в нефтеперерабатывающей промышленности / Фергана: Техника, 2005. 91 с.
- 2. Рахимов, Н. Р. Оптоэлектронный анализатор цвета полупрозрачных жидкостей / Н.Р. Рахимов, О.К. Ушаков, Е.Ю. Кутенкова, М.П. Исаев // Сб. матер. V Междунар. науч. Конгресса «Гео-Сибирь-2009». 2009. Т. 5. С. 123–128.
- 3. Зайцев, Л.А. Системы сбора и обработки информации для резервуарных парков / Л.А. Зайцев, В.В. Панарин. М.: Недра, 1984.
- 4. Рахимов, Н.Р. Оптический метод определения содержания воды в нефтепродуктах / Н.Р. Рахимов, Ш.М. Сайдахмедов и др. // Узбекский журнал нефти и газа. -2001. -№ 1. C. 40–42.

© Н.Р.Рахимов, М.П.Исаев, 2010

УДК 681.772.7 А.С. Рафаилович НФ ИФП СО РАН «КТИПМ», Новосибирск

ОЦЕНКА ЭФФЕКТИВНОСТИ ПРИМЕНЕНИЯ МИКРОСКАНИРОВАНИЯ В ВЫСОКОЧУВСТВИТЕЛЬНЫХ ТЕЛЕВИЗИОННЫХ СИСТЕМАХ НА ОСНОВЕ ЭЛЕКТРОННО-ОПТИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЕЙ

Рассмотрена возможность повышения пространственного разрешения высокочувствительных телевизионных систем на основе оптико-электронных преобразователей применением микросканирования.

A.S. Rafailovich

Novosibirsk Branch of the Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, "Technological Design Institute of Applied Microelectronics", Novosibirsk

EVALUATION OF THE USING MICROSCANNERS IN HIGH SENSITIVE TELEVISION SYSTEMS BASED ON ELECTRO-OPTICAL TRANSDUCERS

Possibility of increase the spatial resolution of High Sensitive Television Systems based on electro-optical transducers using micro scanning is considered.

Обобщенная структурная схема высокочувствительной телевизионной (ТВ) камеры на основе электронно-оптического преобразователя (ЭОП) приведена на рис. 1.

Рис. 1. Структурная схема ТВ камеры на основе ЭОП:

1 – объектив, 2 – ЭОП, 3 – система переноса изображения, 4 – матричный приемник излучения, 5 – модуль обработки сигнала

Объектив 1 формирует изображение наблюдаемой сцены в плоскости фотокатода ЭОП 2. Под воздействием оптического излучения происходит выход электронов из поверхности фотокатода. Часть эмитируемых с фотокатода электронов попадает в каналы микроканальной пластины (МКП) под действием проложенного к ней напряжения. Количество электронов пропорционально распределению освещенности в плоскости фотокатода. Поскольку отверстия каналов занимают не всю площадь входа (отношение суммарной площади отверстий каналов к общей площади МКП обычно около 0,6), то часть электронов на входе теряется. Влетающие в канал электроны, соударяясь с его внутренней поверхностью, вызывают вторичную электронную эмиссию.

Согласно информации производителя [1], типовая МКП представляет собой стеклянный диск и состоит из микроканальной вставки (МКВ) и монолитного (MO). МКВ представляет собой обрамления матрицу двенадцатиугольника с рифлеными границами) из множества (500 – 1000) расположенных И спеченных вместе шестиугольных микроканальных сот (МКС). Каждая МКС состоит из множества (5000 – 10000) регулярно расположенных и спеченных вместе миниатюрных трубчатых каналов, диаметр которых может составлять 4, 5, 6, 8, 10 или 12 мкм, а плотность – порядка $(0.5 - 5) \times 10^6$ см⁻². Каналы МКП наклонены относительно нормали к торцам на угол от 4 до 13°. Именно размер каналов и топология МКС основными факторами, определяющими пространственное являются разрешение ЭОП. Считается, что вылетающие вторичные электроны в пространстве распределены по закону косинуса. Поток вторичных электронов в канале многократно усиливается, после чего попадает на экран ЭОП, покрытый люминофором. Геометрическое разрешение современных ЭОП не превышает 40 Mm^{-1} . Именно это основным является фактором, ограничивающим TB камер поскольку частотно-контрастная разрешение данного типа, характеристика системы переноса изображения 3 и матричного приемника излучения 4 в настоящее время позволяет реализовать разрешение до 120 мм⁻¹.

На рис. 2 представлен внешний вид экрана ЭОП при максимальной напряженности поля в канале. В этом режиме становится заметна топология МКВ (четко видны невооруженным глазом границы шестиугольников МКС).

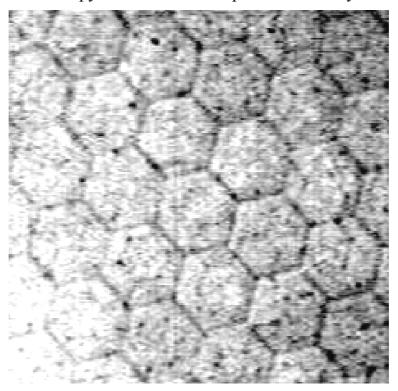


Рис. 2. Топология МКС, наблюдаемая на экране ЭОП

В тепловизионных системах [2] увеличения геометрического разрешения матричного фотоприемника добиваются применением микросканирования,

которое осуществляется путем сдвига изображения (кадра) в плоскости фоточувствительных элементов на часть периода матрицы приборов с зарядовой связью (наиболее часто используется сдвиг на 1/2 кадра) и выборки полученного изображения с последующим объединением полученных изображений.

В ТВ камерах с ЭОП наиболее рациональным представляется смещение изображения наблюдаемой сцены в плоскости, совпадающей с плоскостью фотокатода ЭОП, на величину равную половине периода каналов МКС. При этом для исключения из конечного изображения информации о топологии МКС необходимо для каждого полукадра производить операции выравнивания, а также вычитания из него «темнового» кадра, снятого по уровню квантования не менее величины темнового шума ЭОП.

Применением микросканирования с последующей математической обработкой сигнала возможно повысить пространственное разрешение системы почти в два раза без качественного изменения параметров приемника излучения.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Кулов С.К. Физика и применение МКП [Electronic resource] / Режим доступа:
- ttp://baspik.com/index.php?option=com_content&view=article&id=35:pabl&catid=31:public&Itemid=46
- 2. Тарасов В.В., Якушенков Ю.Г. Некоторые пути совершенствования тепловизионных систем [Текст] / Тарасов В.В., Якушенков Ю.Г. // Специальная техника. 2004. № 2. С. 11–19.

© *A.C. Рафаилович*, 2010

УДК 681.783.25 Г.Е. Журов, М.Ю. Цивинский НФ ИФП СО РАН «КТИ ПМ», Новосибирск

ПРИМЕНЕНИЕ ПАРАДИГМЫ ВЫСОКОПРОИЗВОДИТЕЛЬНЫХ РЕКОНФИГУРИРУЕМЫХ ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ ДЛЯ ПОСТРОЕНИЯ ТРАКТА ОБРАБОТКИ ИЗОБРАЖЕНИЯ В ТЕПЛОВИЗИОННЫХ И МНОГОКАНАЛЬНЫХ ПРИБОРАХ

Современные системы обработки изображений для тепловизионных и приборов характеризуются постоянно возрастающими требованиями, обусловлено увеличением что разрешения сенсоров, использованием современных адаптивных алгоритмов, требованиями устройств. Классические решения, основанные автономности Неймановской парадигме, не позволяют достичь заданных характеристик. Для реконфигурируемые решения задачи используется новый подход вычислительные системы. В представляется практическое докладе использование данного подхода в наших устройствах. Приведен обзор развития реконфигурируемых вычислительных систем.

G.E. Zhurov, M.Yu. Tsivinsky

Novosibirsk Branch of the Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, "Technological Design Institute of Applied Microelectronics", Novosibirsk

THERMOVISION AND MULTICHANNEL IMAGE PROCESSING SYSTEMS BASED ON HIGH-PERFORMANCE RECONFIGURABLE COMPUTING (HPRC) PARADIGM

Image Processing Systems requirements dramatically increase nowadays: growing number of sensor channels, growing use of adaptive algorithms, higher resolution sensors, more use of autonomous devices. Classic von-Neumann paradigm based solutions cannot achieve requirements demanded. New advanced paradigm used in modern image processing systems – High Performance Reconfigurable Computing. In this paper we present our devices as example of this paradigm using in practice. HPRC overview is presented also.

Современные тепловизионные и многоканальные приборы характеризуются большими и постоянно возрастающими требованиями к подсистеме обработки входного потока (потоков) данных. Эти требования обусловлены следующими факторами:

– Высокое разрешение современных и перспективных приемников излучения в используемом спектральном диапазоне;

- Высокая частота кадров;
- Тенденция к увеличению числа параллельно обрабатываемых каналов, особенно для мультиспектральных и гиперспектральных систем;
- Необходимость использования сложных и ресурсоемких алгоритмов цифровой обработки сигналов;
- Необходимость реализации значительной части вычислений в масштабе реального времени;
- Высокие требования к вычислительной системе с точки зрения энергопотребления;

Исходя из вышеприведенных пунктов, из анализа существующих и перспективных решений тепловизионных и многоканальных систем, можно сделать вывод, что удельная сложность подсистемы обработки данных в таких приборах существенно возрастает и при превышении некоторого «порога сложности» требует перехода к новым принципам построения вычислительной системы прибора [1, 2].

В качестве примера рассмотрим структурную схему подсистемы обработки видеопотоков для прибора «Зарница» [3] (см. рис.). Прибор содержит лазерный локационный канал (ЛЛК) и тепловизионный канал (ТпВК).

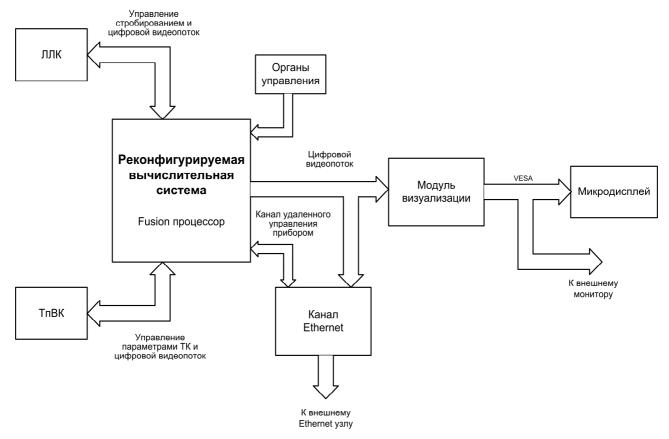


Рис. Структурная схема прибора

Основной объем вычислений выполняет реконфигурируемый модуль, выполненный на базе FPGA. Решение данной задачи с помощью традиционных процессоров, в том числе и процессоров цифровой обработки сигналов, нереализуемо как по причине невозможности обеспечить требуемую

вычислительную мощность, так и по причине невозможности обеспечить требуемое энергопотребление.

Аналогичное решение используется и в тепловизионном приборе ТБ-3 — вся обработка видеопотока в реальном времени производится в реконфигурируемом модуле на базе FPGA.

С «узкой» практической точки зрения рассмотренный выше подход к данной (использование **FPGA** ДЛЯ построения решению задачи вычислительного большинством устройства) не HOB используется И разработчиков в течение ряда лет. Более широкий взгляд на представленную структуру приводит к следующим выводам.

Во-первых, следует **FPGA** заметить, что реализованное на высокопроизводительное вычислительное устройство, построено не на основе классической фон-Неймановской архитектуры. Под архитектурой фон Неймана здесь понимается общая парадигма построения всех современных компьютеров (принцип хранимой программы и т.д.), а не фон Неймановская организация компьютера в более узком смысле (программа и данные в общей памяти). Фон Неймановская парадигма предполагает, что вычислительным управляет поток команд, а данные выбираются из каких-то систем хранения или из памяти. Альтернативная схема основывается на том, что процессом вычислений «управляют» входные потоки данных, которые на входе системы попадают в подготовленную вычислительную инфраструктуру, обладающую естественным параллелизмом. Такая концепция построения вычислительных систем известна давно, но по ряду принципиальных ограничений применялась широко на практике. Профессор Reiner Hartenstein называет такую концепцию построения вычислительной системы «антимашина», так как Неймана почти свойствам антипод машины фон ПО всем своим антисимметричен ей [4].

Во-вторых, данное решение относится к классу реконфигурируемых вычислительных систем. Реконфигурируемые (вычислительные) системы (устоявшийся англоязычный термин – Reconfigurable Computing) парадигма вычислительных систем, сочетающая построения одновременно гибкость программного подхода (неизменяемый процессор и программное обеспечение) изменяемое задачу ПОД производительность аппаратного решения (неизменяемое специализированное устройство, выполняющее неизменяемый алгоритм) [2].

По сути, реконфигурируемая система позволяет строить гибкое решение в двух «ортогональных координатах» — и программной и аппаратной. С появлением подходящей элементной базы (в частности, с появлением FPGA, обладающих производительностью выше некоторого барьера) стало возможным изменять аппаратную компоненту системы под конкретную задачу, причем время, требуемое на изменение этой компоненты, стало приближаться ко времени необходимому для модификации программной компоненты.

В настоящее время за рубежом данному подходу (Reconfigurable Computing) уделяется огромное внимание, в том числе и на уровне стратегических долгосрочных программ [5, 6]. Достаточно посмотреть списки

участников программы, чтобы осознать степень внимания и заинтересованности к данному направлению со стороны крупнейших концернов ВПК, исследовательских центров и высшего руководства США.

В рамках данного подхода большое внимание уделяется и таким важным построение сверхвысокопроизводительных частным задачам, как вычислительных систем для обработки изображения с сенсоров в различных спектральных диапазонах в масштабе реального времени и с жесткими ограничениями на массу и энергопотребление устройства. Наиболее яркий пример в данном направлении – проект MONARCH, выполненный по заказу DARPA концернами Raytheon и IBM при участии ряда ведущих научных США [1]. Результатом данного проекта стала центров реконфигурируемых полиморфных вычислительных «процессоров», которые в себе тандем из классической машины фон-Неймана предназначены для перспективных систем обработки «антимашины» видеоданных, полученных с сенсоров в различных спектральных диапазонах. Такое решение имеет ряд принципиальных преимуществ перед использованием универсальных FPGA.

Модули обработки потоков данных, которые реализованы в наших приборах, базируются на использовании парадигмы HPRC (High-Performance Reconfigurable Computing). Данный подход представляется чрезвычайно перспективным и востребованным для задач нашей тематики.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Raytheon Develops World's First Polymorphic Computer. Military Embedded Systems [Electronic resource] Англ. Режим доступа: http://www.milembedded.com/news/db/?5784/.
- 2. Scott Hauck, Andre Dehon (Ed.). Reconfigurable computing: the theory and practice of FPGA-based computation. Elsevier, Burlington, MA, USA, 2008.
- 3. Голицын А.В., Журавлев П.В., Журов Г.Е., Корякин А.В., Чихонадских А.П., Шлишевский В.Б., Яшина Т.В. Псевдобинокулярный двухканальный прибор обнаружения потенциальных угроз [Текст] / А.В. Голицын, П.В. Журавлев, Г.Е. Журов, А.В. Корякин, А.П. Чихонадских, В.Б. Шлишевский, Т.В. Яшина // Изв. вузов. Приборостроение. − 2009. Т.52, № 6. − С.27-34.
- 4. Reiner Hartenstein. Keynote addresses [Electronic resource] Англ. Режим доступа: http://www.hartenstein.de/keynotes.htm.
- 5. Center for High-Performance Reconfigurable Computing [Electronic resource] Англ. Режим доступа: www.chrec.org.
 - 6. [Electronic resource] Англ. Режим доступа: www.openfpga.org.

УДК 535.317 А.В. Турбин, П.А. Алдохин НФ ИФП СО РАН «КТИПМ», Новосибирск

МАЛОГАБАРИТНЫЙ ТЕПЛОВИЗОР НА БАЗЕ ЛИНЕЙЧАТОГО ФОТОПРИЕМНОГО УСТРОЙСТВА

Сообщается о разработке унифицированного малогабаритного тепловизионного модуля, его особенностях и характеристиках.

A.V. Turbin, P.A. Aldokhin

Novosibirsk Branch of the Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, "Technological Design Institute of Applied Microelectronics", Novosibirsk

THE COMPACT INFRARED THERMAL IMAGING DEVICE BASED ON LINEAR PHOTODETECTOR

Characteristics of the Compact Infrared Thermal Imaging Device and its features are describes.

В настоящее время тепловизионные приборы являются одними из основных каналов информационных систем, предназначенных для дистанционного контроля и детального исследования окружающего пространства.

В Филиале ИФП СО РАН «КТИПМ» разработан малогабаритный тепловизор на базе линейчатого фотоприемного устройства (ФПУ) формата

4×288 элементов. Особенностью прибора является то, что он собран из унифицированных узлов и блоков; его внешний вид показан на рис. 1.

В состав тепловизора входят следующие основные узлы и блоки:

- Модуль ФПУ размерностью 288×4 элементов, интегрированный с модулем охлаждения фотоприемника в виде единой конструкции;
- Модуль развертывающего устройства (МРУ);
- Модуль электронной обработки (МЭО);
 - Узел входной оптики;
 - Узел управления;

Рис. 1. Внешний вид тепловизора

Источник питания.

Модуль ФПУ разработан и изготовлен ФГУП «НПО "Орион"». ФПУ интегрирован с модулем охлаждения фотоприемника и представляет собой отдельный узел. В состав модуля входят следующие основные узлы и блоки: линейчатое ФПУ, модуль управления и охлаждающая машина. Такое конструктивное исполнение ФПУ приводит к уменьшению массогабаритных характеристик всего прибора. Внешний вид ФПУ показан на рис. 2.

Рис. 2. Внешний вид ФПУ

Основные характеристики ФПУ и интегрированного с ним модуля охлаждения:

- Коротковолновая граница спектральной чувствительности, по уровню 0.5 мкм
- Длинноволновая граница спектральной чувствительности по уровню 0,1 мкм \$11,0\$
 - Диаметр отверстия охлаждаемой диафрагмы, мм
 7,2
 - Высота охлаждаемой диафрагмы над фокальной плоскостью, мм
 11.5
- Среднее значение удельной обнаружительной способности по недефектным каналам в максимуме спектральной чувствительности при времени интегрирования 25 мкс и температуре фона 300 K, см $\mathrm{Bt}^{-1}\Gamma\mathrm{L}^{1/2}$

 $11,7\cdot10^{10}$

- Среднее значение вольтовой чувствительности при времени интегрирования 25 мкс и температуре фона 300 К, В/Вт $16.4 \cdot 10^{7}$
 - Рабочая температура охлаждаемого узла, К

78

- Максимальное время непрерывной работы, ч
 - Время выхода на режим при нормальных климатических условиях, мин 4.5

10

– Диапазон рабочих температур, °C ±50

В состав разработанного в Филиале ИФП СО РАН «КТИПМ» МРУ входят следующие основные узлы и блоки: кадровый сканер, строчный сканер, объектив, блок управления сканерами. Внешний вид МРУ показан на рис. 3.

Рис. 3. Внешний вид МРУ

	В	процессе	исследований	образцов	МРУ	получены	следующие		
характеристики:									
Рабоний спектральный пианазон, мкм							77 10 3		

_	Рабочий спектральный диапазон, мкм	7,7–10,3
_	Формат поля зрения	4:3
_	Период сканирования полного калра, ме	40

- Период сканирования полного кадра, мс
 40
- Рабочий диапазон колебания зеркала сканера строчной развертки, град ±7
- Предельно возможный диапазон колебания зеркала, град ±9,5
- КПД по углу перемещения сканера строчной развертки, % 80
- Рабочий диапазон положений пластины сканера кадровой развертки, угл. мин. ± 48

– Интегральное пропускание, %	80
-------------------------------	----

- Частота колебания зеркала сканера строчной развертки, Гц 25
- Частота развертки, Гц50
- Время готовности к работе, мин1
- Номинальное напряжение питания, В
 27
- Потребляемая мощность, Вт

В итоге экспериментально подтверждены следующие характеристики тепловизора:

– Диапазон спектральной чувствительности, мкм 7,7–10,3

 Количество рабочих полей зрения 	2				
Размеры угловых полей зрения:					
узкое поле зрения, град	$2,4 \times 2,2$				
широкое поле зрения, град	$7,2 \times 6,6$				
– Кратность смены увеличений рабочих полей зрения, крат	3				
– Разность температур, эквивалентная шуму (Δ Тэ.ш.), с учетом узла					
входной оптики, °С	0,1				
– При температурном перепаде $\Delta T = 0.8$ °C период разрешаемой миры по					
горизонтали и вертикали, мрад-1	3,75				
 Параметры выходного аналогового сигнала ГОСТ 78 	845-92				
 Параметры выходного цифрового сигнала 12 	-разрядный				
параллельный код					
 Временя готовности к работе, мин 	8				
– Видеосигнал яркости с числом "ступеней дискретизации" по амплитуде					
от минимума до максимума	1024				
 Протокол информационного обмена 	RS 422				
 Период формирования полного кадра изображения, мс 	40				
 Формат обрабатываемого тепловизионного кадра 	640×576				
 Режим электронного увеличения, крат 	2; 4				
 Потребляемая мощность, Вт 	80				
 Номинальное напряжение питания, В 	27				
 Диапазон рабочих температур, °C 	±50				

На рис. 4 приведены изображения, полученные с помощью данного тепловизора. Изображение 4a — без оптического увеличения, изображение 4δ — с трехкратным оптическим увеличением.

а б

Рис. 4. Изображения объектов с различным увеличением

Отметим, что подобного рода прибор может быть эффективно использован для обзора местности, обнаружения, распознавания одиночных и групповых, движущихся и неподвижных объектов в спектральном диапазоне 8 – 12 мкм на фоне естественной подстилающей поверхности в реальном масштабе времени.

УДК 520.2 В.Л. Парко СГГА, Новосибирск

ТЕНДЕНЦИИ РАЗВИТИЯ СЕРИЙНЫХ АСТРОНОМИЧЕСКИХ РЕФРАКТОРОВ

Проведен сравнительный анализ преимуществ и недостатков астрономических телескопов-рефракторов, выявлены тенденции развития серийных приборов указанного типа.

V.L. ParkoSiberian State Academy of Geodesy (SSGA)10 Plakhotnogo St., Novosibirsk, 630108, Russian Federation

DEVELOPMENT'S TENDENCIES OF THE SERIAL ASTRONOMICAL REFRACTORS

The comparative analysis of advantages and lacks of the astronomical telescopes-refractors is carried out; development's tendencies of serial devices of the specified type are revealed.

Астрономы, использующие серийно выпускаемые телескопы, при проведении астрономических наблюдений Луны, планет, шаровых скоплений, двойных звезд, ярких объектов каталогов Мессье, NGC и IC, в большинстве случаев отдают предпочтение телескопам-рефракторам, изображения в которых отличается от изображений, формируемых рефлекторами и зеркальнолинзовыми (катадиоптрическими) телескопами, большей четкостью, является более контрастным, в нем отсутствуют дифракционные пики, обусловленные наличием растяжек для крепления вторичного зеркала.

Эмпирическое правило, основанное на многочисленном астрономических наблюдений деталей Луны, планет, разрешения двойных звезд, шаровых скоплений в типичных, земных условиях с использованием серийно выпускаемых телескопах, гласит, что хорошие 75 – 100 мм рефракторы обычно превосходят средние 150 – 200 мм рефлекторы или зеркально-линзовые телескопы, построенные по схеме Шмидт-Кассегрена. Выбор типа телескопа для указанных астрономических наблюдений является не таким однозначным при сравнении линзовых телескопов с зеркально-линзовыми, построенными по схемам Максутова-Кассегрена или Максутова-Ньютона, но и при их сравнении в большинстве случаев качество изображения в хорошем рефракторе будет лучше, чем в указанных телескопах такой же апертуры, за исключением некоторых дорогостоящих моделей последних. Основные причины очевидны: в отличие от рефлекторов (системы Ньютона, Грегори и Кассегрена) и зеркально-

линзовых телескопов (системы Шмидт-Кассегрена, Максутова-Кассегрена и др.), у рефракторов отсутствует центральное экранирование, значительно снижено влияние паразитных отражений внутри оптической системы на освещенность изображения неба, что способствует повышению контраста изображений небесных объектов на фоне ночного неба. Вместе с тем, рефракторы обеспечивают и меньшие потери излучения внутри оптической системы: коэффициент пропускания оптической системы у рефракторов превышает 0,9; у рефлекторов составляет 0,77 - 0,8; у зеркально-линзовых телескопов - от 0,64 до 0,75. В указанных значениях коэффициентов пропускания для рефлекторов и зеркально-линзовых телескопов не учтены экранированием обусловленные диагональным ИЛИ зеркалами, величина которых в некоторых схемах телескопов может достигать 15 – 20 % от общих потерь световой энергии. Кроме того, в связи с постепенным окислением зеркальных покрытий, коэффициент отражения в рефлекторах и зеркально-линзовых телескопах ежегодно снижается на 1-1,5 % для каждой зеркальной поверхности оптической системы. В то же время коэффициент пропускания оптической системы рефрактора редко значительно изменяется со временем. Так, рефракторы, изготовленные более ста лет назад, активно используются и в наше время: например, самый большой в мире линзовый телескоп - 40" рефрактор Йеркской обсерватории (США) находится в постоянном профессиональном использовании, начиная с 1897 г.

В результате, по сравнению с рефлектором или зеркально-линзовым телескопом апертура рефрактора как оптического прибора используется при астрономических наблюдениях наиболее эффективно. Это преимущество наиболее существенно проявляется при наблюдениях в условиях низкой атмосферной видимости, когда детали небесных объектов, рассматриваемые в телескоп с большой апертурой, смазываются турбулентностью земной атмосферы. Волнение земной атмосферы искажает приходящий от удаленной звезды плоский волновой фронт таким образом, что свою исходную форму сохраняют участки фронта размером не более 100-200 мм. При наблюдениях с хорошим объективом рефрактора близкого диаметра изображение объекта непрерывно смещается в фокальной плоскости вследствие изменений наклона плоских фрагментов волнового фронта, но качество мгновенного изображения дифракционным. Если изображение регистрировалось бы фотопластинкой, то за долгую экспозицию его мелкие детали оказались размытыми. Между тем система «глаз + мозг человека» привычно фильтрует случайные колебания изображения как целого, выделяя его мелкомасштабную структуру [1].

Отсутствие в рефракторах таких дополнительных ограничений апертур как растяжки позволяет получить распределение энергии в дифракционной картине изображения точки, соответствующее круглому входному зрачку; наличие же растяжек в пределах апертур рефлектора или зеркально-линзового телескопа приводит к изменению дифракционной картины в изображении точки и появлению дополнительных дифракционных пиков. В результате, без этих пиков, скрывающих слабые детали двойных звезд или смазывающих

изображения шаровых скоплений, линзовые телескопы позволяют обеспечить более высокое разрешение при наблюдении близко расположенных звезд по сравнению с рефлекторами равных апертур [2].

К достоинствам рефракторов можно отнести и их конструктивную устойчивость к разъюстировкам, в закрытой трубе рефрактора слабее сказывается температурная конвекция воздуха на искажение волнового фронта. Также оптические системы рефракторов являются более технологичными в изготовлении, что обусловлено прежде всего тем, что допуски на погрешности изготовления поверхностей линз сравнительно шире, чем на отражающие поверхности, а одинаковый класс чистоты достигается на сферических поверхностях меньшими технологическими затратами, чем на асферических.

Вышеуказанные преимущества объясняют популярность рефракторов у любителей астрономии, пользующихся серийно выпускаемыми телескопами, а, следовательно, и у фирм-производителей серийных телескопов.

Самыми массово выпускаемыми в мире телескопами, имеющимися в номенклатуре абсолютно всех производителей серийных астрономических приборов, являются рефракторы-ахроматы, имеющие, как правило, двухлинзовый склеенный (рис. 1, а) или расклеенный объектив (рис. 1, б).

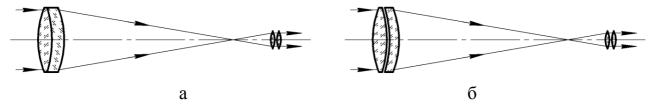


Рис. 1. Типы рефракторов-ахроматов

Производимые серийные рефракторы-ахроматы существенно различаются по относительному отверстию — от 1/13 до 1/5, их апертуры варьируются от 50 до 150 мм. Наиболее широкий набор ахроматов предоставляет китайская фирма Skywatcher - более 14 моделей.

В объективах рефракторов с апохроматической коррекцией аберраций используются стекла со сверхнизкой дисперсией или флюорит, что позволяет по сравнению с ахроматами обеспечить большую светосилу и лучшее качество изображения, но повышает стоимость оптики. Традиционно объектив апохромата является двухлинзовым (построенным по схеме, представленной на рис. 16), или трёхлинзовым (рис. 2). Апертуры серийных апохроматов варьируются от 80 до 200 мм, а относительные отверстия от 1/8 до 1/5. Признанным мировым лидером в производстве рефракторов-апохроматов является японская фирма Takahashi - в ее ассортименте 13 моделей апохроматов, объективы которых построены по указанным схемам.

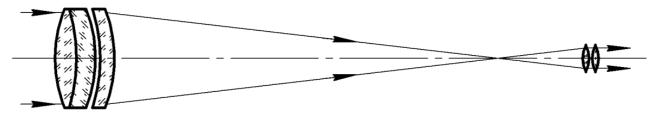


Рис. 2. Схема рефрактора-апохромата

Несмотря на то, что рефракторы малых апертур достаточно компактны, легки и дешевы, при апертурах более 80 мм они становятся громоздкими, тяжелыми и значительно более дорогими по сравнению с рефлекторами или зеркально-линзовыми телескопами. Например, 100 мм апохроматический рефрактор обычно стоит и весит столько же, сколько четыре-восемь 115 мм рефлекторов или 90 мм зеркально-линзовый телескоп, построенный по схеме Максутова-Кассегрена. Это связано с тем, что традиционно используемые в апохроматах особые стекла и флюорит дороги и значительно влияют на конечную цену телескопа.

На Новосибирском приборостроительном заводе (НПЗ) разработана новая схема апохромата на простых стеклах с разнесенными компонентами (рис. 3) [3], в которой используется всего два сорта обычного оптического стекла, полноапертурный компонент объектива выполнен в виде одиночной линзы, второй компонент - в виде трехлинзовой, а третий - виде двухлинзовой склеек, при этом диаметры второго и третьего компонентов существенно меньше диаметра первого компонента.

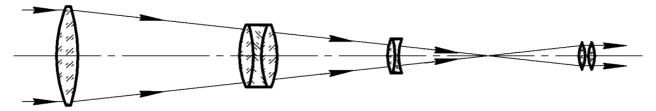


Рис. 3. Схема рефрактора-апохромата НПЗ

Не смотря на то, что конструкция трубы такого телескопа-апохромата сложнее по сравнению с традиционной, указанные особенности оптической схемы позволяют существенно снизить себестоимость производства. В настоящее время апохроматы НПЗ с апертурами 125 и 150 мм и относительными отверстиями соответственно 1/7,5 и 1/6,3 производятся мелкосерийно, их цена в два раза ниже аналогов, построенных по традиционной схеме с подобным качеством изображения.

Очевидно, что дальнейшее совершенствование апохроматов на простых стеклах является перспективным направлением развития серийно выпускаемых телескопов-рефракторов. В то же время общая методика расчета таких апохроматов в настоящее время отсутствует. Как влияют комбинации стекол и положение оптических компонентов на качество изображения? Возможно ли создание суперапохромата для серийного телескопа на простых стеклах? Каковы предельные значения относительных отверстий, апертур, угловых полей могут быть реализованы в апохроматах с разнесенными компонентами с учетом ограничений, накладываемых технологиями серийного производства? Для ответа на эти и другие вопросы необходимы теоретические исследования оптических систем современных рефракторов, разработка методики их расчета, подтверждение ее экспериментальными работами по созданию новых оптических систем конкурентно способных серийно выпускаемых телескопов.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Теребиж, В.Ю. Современные оптические телескопы [Текст] / В.Ю. Теребиж. М.: ФИЗМАТЛИТ, 2005. 126 с.
- 2. Михельсон, Н.Н. Оптические телескопы. Теория и конструкция [Текст] / Н.Н. Михельсон. М.: Наука, 1976. 364 с.
- 3. Пат. 2331094 Российская федерация, МПК7G02B 9/28. Апохроматический объектив [Текст] / заявитель и патентообладатель Федеральное государственное унитарное предприятие «Производственное объединение «Новосибирский приборостроительный завод». №2006121862/28; заявл. 08.06.2006; опубл. 10.08.2008, Бюл. № 22. С. 7.

© В.Л. Парко, 2010

УДК 681.5 Г.А. Сырецкий СГГА, Новосибирск

МУЛЬТИАГЕНТНАЯ МЕТОДОЛОГИЯ И АВТОМАТИЗИРОВАННОЕ НЕФТЕГАЗОВОЕ ПРОИЗВОДСТВО

Рассмотрены методология, инструментальные средства создания агентноориентированных приложений и примеры использования агентов в автоматизированном нефтегазовом производстве.

G.A. Syretsky
Siberian State Academy of Geodesy (SSGA)
10 Plakhotnogo Ul., Novosibirsk, 630108, Russian Federation

MULTI-AGENT METHODOLOGY AND AUTOMATED OIL-AND-GAS MANUFACTURE

Methodology and Tool means of creation of the agent-oriented applications and examples of usage of agents in automated oil-and-gas manufacture are considered.

В настоящее время в России нефтегазовая отрасль является одной из ключевых. Она связана с решением таких важных технологических задач как добыча нефти и газа из скважин, разделение фаз и очистка, транспортировка, хранение, переработка, доставка заинтересованным сторонам и использование нефтегазовых продуктов в промышленности и быту. Современное нефтегазовое производство — сложная территориально распределенная система с разветвленной инфраструктурой. По своей природе производство является пожаро и взрывоопасным. Некоторые из опасных объектов производства перемещаются на различные расстояния. Поэтому оно оснащается системами противоаварийного управленияи и информационной безопасности.

Сейчас нефтегазовый комплекс насыщен множеством средств автоматизации технологических процессов, производств, мониторинга и диагностики. Ныне средства автоматизации разнообразного технологического оборудования структурируются поддерживаются И многоуровневой информационно-телекоммуникационной индустриальной сетью разнообразными физическими средами передачи сигналов и множеством программного обеспечения разного назначения. В такой сложной среде информационный обмен, доступ к источникам информации и средствам обработки информации базируется как правило на клиент-серверной архитектуре.

Известно, что использование централизованной и клиент-серверной архитектуры построения сетевых индустриальных систем не всегда оправдано

[1], в том числе и при решении задач нефтегазового комплекса. Выходом из такой ситуации служит ориентация на мультиагентную методологию: агентное моделирование, агентно-ориентированные и мультиагентные технологии и системы [1-3], включая интеллектуальные. Мультиагентная методология в деталях рассматривается в докладе.

Под термином «агент» понимают сущность, наделенную полномочиями действовать в активной информационной среде от имени другой сущности. Причем в зависимости от обстоятельств агент может обладать способностью изменения своего состояния: быть активным, пассивным либо ликвидироваться.

Спецификациями стандарта IEEE FIPO (http://www.fipa.org) определены рассматриваемые в докладе разнообразные свойства агентов, в их числе фазы жизненного цикла (рис. 1) и обобщенной модели (рис. 2).

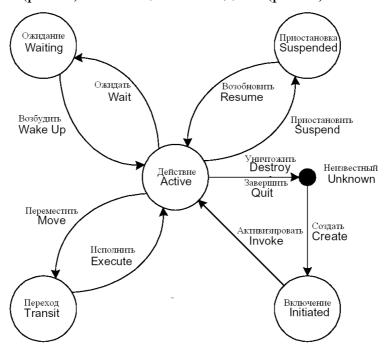


Рис. 1. Жизненный цикл агента IEEE FIPA

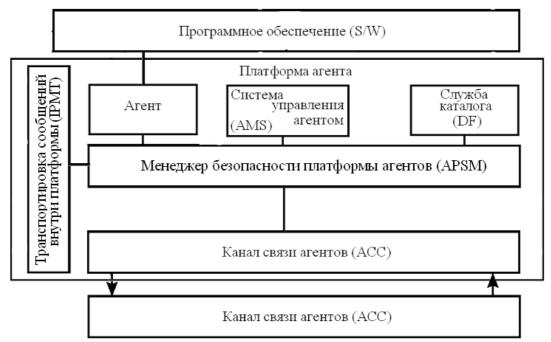


Рис. 2. Обобщенная модель управления агентом IEEE FIPA

По своей природе агенты могут быть стационарными, мобильными и подвижными. Мобильные агенты перемещаются между узлами компьютерной сети с многозвенной клиент-серверной архитектурой. Подвижные агенты (Nomadic Agents) — автономные агенты, приспособленные к управлению на подвижных устройствах в P2P (peer-to-peer) мире без потребности в связи с контейнером. Архитектура P2P мира сервером или формируется одноранговой, пиринговой сети, которая обсуждается в докладе. Архитектура P2P агентской платформы предложена рабочей группой FIPA NA WG в качестве стандартной, позволяющей обеспечивать «прозрачное» взаимодействие агентов, установленных в узлах Р2Р сети (рис. 3).

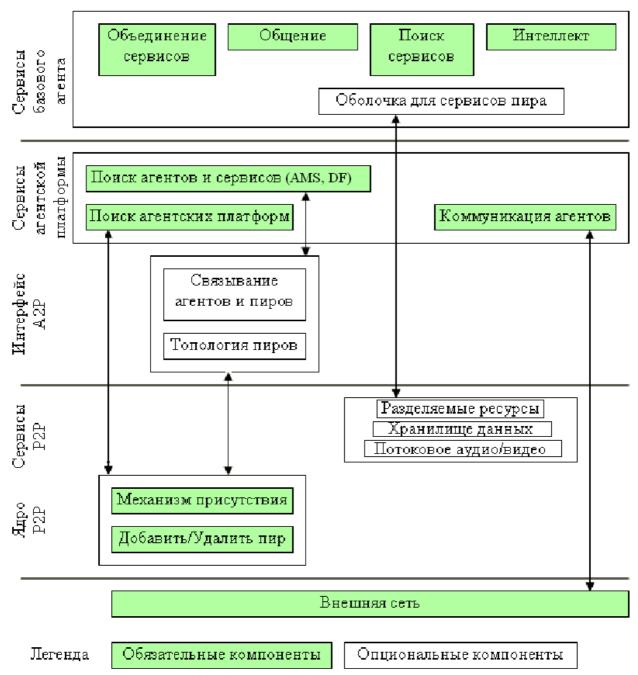


Рис. 3. Функциональная архитектура P2P агентской платформы рабочей группы IEEE FIPA P2PNA WG

В докладе рассматриваются архитектуры P2P мира IEEE FIPA P2PNA WG и типа JXTA (спецификации протоколов по обслуживанию P2P-сетей для обмена данными различного типа). JXTA использует открытые протоколы XML и может быть реализована на любом современном языке программирования, в частности на J2SE, J2ME, C, C++ и C#.

- В заключительной части доклада обсуждается с различной степенью детализации следующее:
- Принципы построения, структуры и компоненты моделей различных агентов и современных многоагентных систем, ориентированных на применение в нефтегазовом производстве. Отражается тот факт, что системы противоаварийного управления, основанные на агентных принципах, позволяют

более качественно выявлять критические ситуации и координировать работу различного технологического оборудования в разных режимах;

- Программные инструментальные средства, позволяющие разрабатывать агентные модели и мультиагентные системы различного назначения для нужд нефтегазовового комплекса. Среди них рассматриваются инструментальные системы агентного моделирования AnyLogic и Plant Simulation, инструментальные программные среды построения многоагентных систем MASDK (генерирует программный код классов агентов на языке C++), LabVIEW и JADE (программный код агентов на языке Java), поддерживаемой платформой Eclipse;
- Возможность использования агентами среды JADE текущих результатов, получаемых в процессе моделирования работы технологического оборудования в среде компьютерной математической системы MatLab с подключенными модулями расширения.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Paolucci M. Agent-based manufacturing and control systems: new agile manufacturing solutions for achieving peak performance / M. Paolucci, R. Sacile. Boca Raton London New York Washington, CRC Press, LLC, 2005.
- 2. Рассел С. Искусственный интеллект. Современный подход, 2-е изд. / С. Рассел, П. Норвинг. М.: Вильямс, 2006.
- 3. Сырецкий Г.А. Информатика. Фундаментальный курс. Том. II. Информационные технологии и системы. Учеб. для вузов / Г.А. Сырецкий.— СПб.: БХВ-Петербург, 2007.

© Г.А. Сырецкий, 2010

УДК 681.7 М.Н. Кистерева СГГА, Новосибирск

О ТОЧНОСТИ ИЗМЕРЕНИЙ ОПТИЧЕСКИМИ И ОПТИКО-ЭЛЕКТРОННЫМИ ПРИБОРАМИ

В статье рассмотрены источники ошибок приборов.

M.N. Kistereva SSGA, Novosibirsk

ON THE ACCURACY OF MEASUREMENT BY OPTICAL AND OPTOELECTRONIC INSTRUMENTS

The sources of instruments errors are considered.

Измерения играют важную роль в разных направлениях науки и техники. Без них не обойтись при изучении размеров и формы земли, при проектировании, строительстве.

Принципиально все измерительные средства можно разделить на механические, оптико-механические, оптические, оптико-электронные, радиотехнические. Основным критерием этой группы устройств является предельная погрешность измерения. В зависимости от назначения измерения выполняют с большей или меньшей точностью [1].

В результате измерений мы получаем значение величины, которое в зависимости от точности может быть больше или меньше истинного значения. Практика показывает, что безошибочных измерений не бывает.

На результат измерений оказывает влияние ряд условий. К ним относят: объект (что измеряют), субъект (кто измеряет), прибор (чем измеряют), метод (как измеряют) и среда (где измеряют). Это так называемый комплекс условий. Выбор лучших условий измерения может привести к повышению точности измерений. Отдельные составляющие комплекса условий можно изменять в зависимости от необходимой точности измерений. Но знать их абсолютно точно или достичь их полной неизменности практически невозможно [2].

В теории ошибок измерений изучают причины и законы распределения ошибок измерений, свойства ошибок и разрабатывают методику наблюдений, что помогает получить числовую характеристику размера с заданной точностью.

По методике измерений они могут быть:

1. Прямые или непосредственные, которые получают путем непосредственного сравнения искомой величины с единицей измерения;

2. Косвенные или посредственные, которые получают путем вычислений через другие измеренные величины [2].

По точности измерения разделяют на:

- 1. Равноточные (выполненные при практически неизменных условиях);
- 2. Не равноточные (выполненные при изменении комплекса условий).

По количеству измерений: необходимые и избыточные. В практике избыточные измерения играют чрезвычайно важную роль, позволяя выявить промахи в измерениях, повысить точность измеренных величин.

Ошибки измерений по своему происхождению делятся на инструментальные, личные, влияния внешней среды и методические.

Инструментальные ошибки возникают из-за несовершенства конструкций приборов, неточности изготовления отдельных узлов. Большое влияние на погрешность прибора оказывает выбор материала, его стабильность. Чем сложнее схема прибора, тем больше будет погрешностей. Как известно, конечная погрешность зависит от количества примененных в схеме прибора кинематических пар, количества звеньев, формы звеньев. Высокоточный прибор, в идеале, должен иметь минимальное число звеньев и кинематических пар [1].

Личные ошибки являются субъективными, т.к. вызваны личными особенностями наблюдающего, недостатками его органов чувств.

Обобщенной характеристикой средств измерения является класс точности, определяемый предельными значениями допускаемых погрешностей, а также другими параметрами, влияющими на точность средств измерения. Значение параметров установлено стандартами на отдельные виды устройств измерений. Класс точности средств измерений не является непосредственным показателем точности измерений, так как точность зависит также от метода измерений и условий их выполнения.

Точность результатов измерений в полевых условиях, значительно ниже, чем инструментальная точность используемых приборов за счет влияния внешних условий, и в первую очередь вертикальной рефракции.

Атмосфера всегда находится в непрерывном движении из-за неодинакового нагревания различных участков земной поверхности и атмосферы. Турбулентность в атмосфере вызвана перемешиванием теплых и холодных масс воздуха. Вследствие этого возникают пульсации полей метеоэлементов – температуры, давления, влажности воздуха, скорости ветра. Турбулентность атмосферы вызывает флуктуации параметров электромагнитных волн, распространяющихся в атмосфере [3].

Турбулентность атмосферы характеризуется случайным изменением полей метеорологических элементов, которые приводят к случайному изменению показателя преломления п воздуха, что в свою очередь приводит к флуктуации параметров световой волны (амплитуды, частоты, фазы, направления и т.д.). В результате появляются искажения и погрешности при работе различных приборов, принцип действия которых основан на использовании

электромагнитных волн. На практике широко используются лазерные приборы, и поэтому, работы связанные с прохождение луча в турбулентной атмосфере, важны как для разработчиков, так и для специалистов, работающих с этими приборами.

Колебания светового пучка обусловлены флуктуациями угла прихода световой волны. Под флуктуациями угла прихода понимаются случайные изменения угла между оптической осью приемного объектива и приходящим в объектив световым пучком. На основании теоретических и экспериментальных данных установлено, что среднее квадратическое значение флуктуации угла прихода δ_{α} для горизонтальной трассы может быть вычислено по формуле 1 [3]:

$$\delta_{\alpha} = 2.84C_n^2 L(2R)^{-\frac{1}{3}} \varphi(\alpha_R),$$
 (1)

где $\varphi(\alpha_R)$ — числовая функция, зависящая от длины трассы и приемной апертуры; C_n^2 — структурная характеристика поля показателя преломления атмосферы вблизи земной поверхности, которая зависит от условий распространения светового пучка; R — радиус объектива приемника.

В результаты измерений внешние условия начинают вносить значительные искажения при длине луча более 100 м.

Из-за турбулентности атмосферы происходит расплывание профиля средней интенсивности светового пучка, что вызывает падение интенсивности на оси пучка по сравнению с той, которая должна быть в однородной среде.

В современных высокоточных оптоэлектронных геодезических приборах для обеспечения высокой точности необходимо учитывать влияние рефракции, т.к. прямолинейное распространение света возможно лишь в идеальной среде. Под рефракцией понимают отклонение луча от своего прямолинейного направления. В атмосфере при переходе от одной неоднородности к другой лучи света в общем случае преломляются. Преломляющие свойства неоднородностей изменяются на малую величину и не имеют четких границ.

При работе с традиционными углоизмерительными приборами наведение на визирные цели осуществляется наблюдателем визуально, и этот процесс занимает время, влияние быстро протекающих атмосферных процессов усредняется. Из-за флуктуации показателя преломления происходят размытия и колебания изображения визирной цели. Искажения, имеющие более длительный период, вносят в результаты измерений систематические ошибки.

В цифровых теодолитах и электронных тахеометрах результаты измерений автоматически регистрируются, это дает более высокую производительность работ. Однако много времени занимают операции, производимые вручную (поиск цели и наведение на нее). Даже использование электронных тахеометров с автоматическим наведением на визирные цели требует много времени по сравнению со скоростью флуктуаций показателя преломлений в атмосфере. По этой причине каждое измерение угла содержит не только инструментальные погрешности измерений, но и ошибки, вызываемые влиянием быстротекущих и медленных атмосферных процессов, которые не усреднены за счет продолжительности измерений.

Современные электронные приборы более точны и удобны при снятии показаний, т.к. способствуют исключению субъективной ошибки наблюдателя.

При проведении измерений постоянно меняется весь комплекс условий. Это приводит к возникновению ошибок измерений. Истинные ошибки включают в себя случайные и систематические. Однако систематические ошибки больше влияют на результат измерений, чем случайные [2].

Поэтому необходима разработка такой технологии выполнения измерений, которая до минимума снизит влияние систематических ошибок.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Лесных, И.В. К обоснованию точности / И.В. Лесных, Б.А. Пизюта, О.К. Ушаков // XLVI научно-техническая конференция преподавателей СГГА, посвященная 30-летию оптического факультета (институт оптики и оптических технологий): тез. докл. конф. Ч. 1. Новосибирск: СГГА, 1996. С. 20–22.
- 2. Дементьев, И.С. Современная геодезическая техника и ее применение / В.Е. Дементьев. М.: Академический проект, 2008. 591 с.
- 3. Войтенко, С.П. Геодезия. Теория вероятностей, математической статистики и ошибок в геодезических измерениях и расчетах: учеб. пособие / С.В. Войтенко, В.С. Заречный. Краснодар: КубГТУ, 2008. 228 с.

© М.Н. Кистерева, 2010

УДК 621.397:621.391.8 А.В. Кринёва ФГУП «ЦКБ Точприбор», Новосибирск В.В. Малинин, А.И. Назаренко СГГА, Новосибирск

ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ СИСТЕМЫ КОМПЬЮТЕРНОГО МОДЕЛИРОВАНИЯ ПРИБОРОВ НОЧНОГО ВИДЕНИЯ

Предлагается основа для разработки универсальной компьютерной модели приборов ночного видения в среде МатЛаб. Предлагаемая модель будет учитывать телевизионный и окулярный вариант ПНВ, а также работу в трех режимах: пассивный, активно-непрерывный и активный со стробированием.

A.V. Krinyova

Federal State Unitary Enterprise «The central design office of precision instruments», Novosibirsk V.V. Malinin, A.I. Nazarenko SSGA, Novosibirsk

DATAWARE FOR THE COMPUTER SIMULATION OF NIGHT-VISION DEVICES

The basis for the development of the universal MATLAB computer simulation of night-vision devices is provided. The model is designed for the television- and eyepiece versions of NVD and operation in three modes: passive, active-and-continuous and active-and-strobing.

Как показывает практика, большой интерес представляют собой универсальные модели оптико-электронных систем (ОЭС) [1]. При этом под универсальностью понимается как учёт разнообразных структур и режимов работы ОЭС, так и учет самых разных состояний фоно-целевой обстановки.

Авторы настоящего доклада предприняли попытку разработать информационное обеспечение системы компьютерного моделирования приборов ночного видения (ПНВ). За основу взята модель ПНВ, описанная в [2, 3]. Рассмотрим её особенности.

На рис. 1 приведено изображение основного интерактивного меню пакета программ «Прометей». Это меню позволяет задавать параметры модели ПНВ телевизионного типа для трех режимов: пассивный, активно-непрерывный и активный со стробированием. Здесь можно выбрать обычный режим вычислений, когда на экран выводятся только конечные результаты, а также отладочный режим, когда на экран выводятся и все промежуточные результаты вычислений. Предусмотрены подменю для ввода значений параметров

основных составляющих модели: внешние условия (фоно-целевая обстановка), входной объектив, электронно-оптический преобразователь (ЭОП), телевизионный тракт, излучатель подсветки.

Подменю «Режим графика» позволяет строить зависимости дальности распознавания объекта наблюдения от любого из выбранных параметров в поле «Выбор аргумента». При этом в основном меню есть средства задания начального и конечного значений выбранного параметра, а также шаг изменения значений выбранного параметра.

Кроме того, в нижней части основного меню имеется ещё пять подменю. Одно из них, «Схема ПНВ», позволяет вывести на экран функциональную схему ПНВ (рис. 2). Эта схема в данной программе несёт существенную информационную нагрузку. Щелчком мыши по обозначениям основных составляющих модели вызывается описание каждой составляющей.

Эти описания являются первой существенной составляющей информационного обеспечения моделирования ПНВ в рассматриваемой программной системе «Прометей».

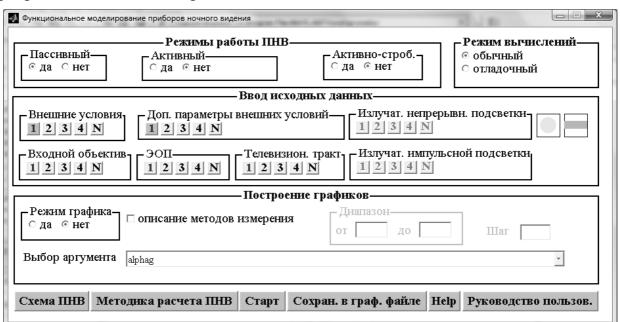


Рис. 1. Основное интерактивное меню пакета программ «Прометей»

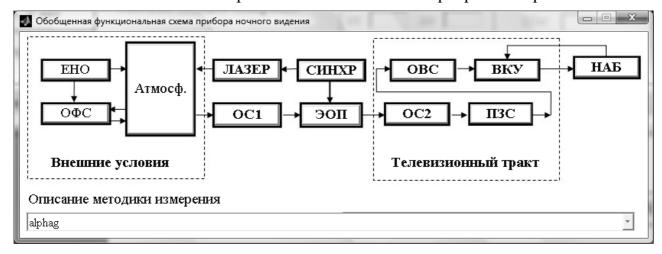


Рис. 2. Подменю, вызываемое кнопкой «Схема ПНВ» основного меню

В нижней части функциональной схемы имеется окно, позволяющее выбрать любой параметр, а также его определение и описание метода измерения. Эта часть модели является второй существенной составляющей информационного обеспечения моделирования ПНВ. Фрагмент списка параметров показан на рис. 3.

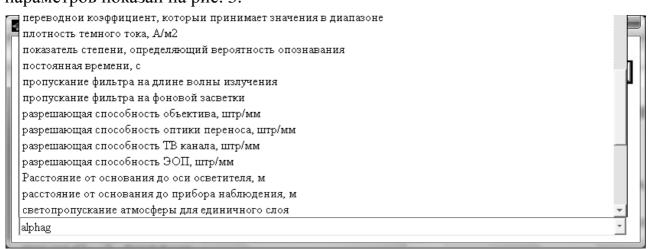


Рис. 3. Фрагмент списка параметров ПНВ

Для наполнения информационного обеспечения системы «Прометей» была использована информация, как из справочной литературы, так и из интернет [4, 5, 6].

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Торшина, И.П. Компьютерное моделирование оптико-электронных систем первичной обработки информации [Текст] / И.П. Торшина М.: Логос, 2009.
- 2. Малинин, В.В. Функциональное компьютерное моделирование телевизионных приборов ночного видения [Текст] / В.В. Малинин, З.М. Цепиногова, В.В. Моисеенко, Г.А. Моисеенко, Г.Н. Попов // Изв. Вузов. Приборостроение. -2007. Т. 50. № 2. С. 18-24.
- 3. Малинин, В.В. Пакет прикладных программ «Система функциионального моделирования оптико-электронных приборов наблюдения в среде MatLab» [Текст] / В.В. Малинин, Г.А. Моисеенко, Г.Н. Попов, З.М. Цепиногова // Свидетельство об изобретении. № 2007612273 от 31.05.2007.
- 4. Мацковская, Ю. 3. Методы контроля приборов ночного видения / Справочное пособие [Текст]. Москва: Горячая линия-Телеком. 2003.
 - 5. Преобразователи электронно-оптические [Текст].// ГОСТ 21815.10—86.
- 6. Измерения параметров и характеристик лазерного излучения. Термины, определения и буквенные обозначения величин [Текст]. // Γ OCT 24453 [Текст]. // Γ OCT P 50772-95.
 - 7. Метод измерения фокусного расстояния [Текст]. //ГОСТ 13095 82.
- 8. Метод определения коэффициента пропускания [Текст]. //ГОСТ 24604 81
 - 9. ОБЪЕКТИВЫ [Текст] // ГОСТ 20828-81.

- 10. http://www.vsegost.com/Catalog/39/39448.shtml.
- 11. Методы измерения параметров [Электронный ресурс]. Режим доступа:

http://docs.google.com/gview?a=v&q=cache:Os9QiUQv3rkJ:gost.tiera.ru/21xxx-xxxx/8xx-xxxx/21815.3-86.pdf.

© А.В. Кринёва, В.В. Малинин, А.И. Назаренко, 2010

УДК 681.7:004 Е.В. Грицкевич, П.А. Звягинцева, О.В. Урбанский СГГА, Новосибирск

ВИРТУАЛЬНЫЙ ИСПЫТАТЕЛЬНЫЙ СТЕНД ДЛЯ ИССЛЕДОВАНИЯ ОПТИКО-ЭЛЕКТРОННЫХ СИСТЕМ

В статье идет речь о создании интерактивного научно-исследовательского обеспечивающего стенда (типа тренажера), виртуальное имитационное оптико-электронных моделирование систем условиях научно-В исследовательских лабораторий и опытно-конструкторских подразделений. Наличие такого стенда-тренажера обеспечит многовариантность исследуемых автоматическую оптимизацию ИΧ параметров, изучение эффективности работы ОЭС в различных условиях без проведения натурных испытаний.

Ye.V. Gritskevich, P.A. Zvyagintseva, O.V. Urbansky SSGA, Novosibirsk

VIRTUAL TEST DESK FOR OPTOELECTRONIC SYSTEMS RESEARCH

The article deals with the development of the on-line research test desk (a kind of a trainer-simulator) providing virtual simulation of optoelectronic systems both on the laboratory scale and in the experimental development departments. This test-desk simulator ensures multivariateness of the devices to be researched, automated optimization of their parameters and the study of the optoelectronic systems efficiency under different conditions without actual test.

В настоящее время отсутствуют компьютерно-ориентированные технологии проектирования и исследования новых типов ОЭС. Компьютеры используются лишь в качестве мощных калькуляторов, обеспечивающих автоматизацию расчетов ОЭС по методикам 20-30-летней давности, которые не учитывают достижения последних лет в области нанотехнологий, фотоники и оптоинформатики, в результате чего разработчики зачастую игнорируют эти достижения. Нет и автоматизированных информационных баз данных, обеспечивающих автоматический поиск требуемой при проектировании справочной информации. Все это сдерживает развитие отечественного оптикоприборостроения, делает процесс проектирования приборов малоэффективным и неоптимальным с точки зрения достижения критериев качества создаваемых систем, непомерно затягивает сроки внедрения новых приборов, увеличивает стоимость проектирования за счет неоправданно большой доли опытно-экспериментальных и натурных исследований.

В настоящее время на кафедре оптико-электронных приборов Института оптики и оптических технологий Сибирской государственной геодезической академии проводятся широкомасштабные научно-исследовательские работы по созданию программно-информационного комплекса для имитационного моделирования оптико-электронных систем. Такой комплекс позволяет проводить виртуальные испытания разрабатываемых систем в условиях научно-исследовательской лаборатории и обеспечивает оптимальный структурно-параметрический синтез современных приборов по заданным критериям качества.

Можно сказать, речь идет о создании виртуального испытательного стенда (ВИСТ), позволяющего проводить качественный анализ нового прибора еще на этапе его «аналитической» разработки. Для такого анализа могут использоваться модели как естественных условий работы прибора по реальным объектам на реальной местности, так и модели стандартизированных лабораторных контрольно-испытательных методик.

Комплекс ориентирован, прежде всего, на исследования:

- Систем визуализации (тепловизоры, ТВ-системы и приборы ночного видения, а также синтезированные на их основе многодиапазонные системы);
- Систем для измерения геометрических параметров удаленных объектов, например, местоположения.

Особенностью комплекса будет являться то, что в ходе моделирования ОЭС появится возможность не только получать объективные количественные данные об эффективности функционирования разрабатываемого прибора, но и непосредственно (субъективно) наблюдать его работу, т.к. предусматривается генерация получаемых прибором изображений на экране монитора, что особенно важно при проектировании наблюдательных ОЭП. Еще одной особенностью будет являться разработка средств и методов имитационного моделирования блоков цифровой обработки изображения ОЭС (например, бортовых компьютеров). Это создаст возможность предпроектной отработки результатов на виртуальной модели сотен возможных алгоритмов ЦОИ с визуализацией результирующих выходных картин, что обеспечит оптимальный выбор требуемых алгоритмов.

В итоге, выполнение данной работы должно привести к созданию мощного вычислительной информационной инструмента ДЛЯ И поддержки проектирования современных ОЭС, а также перспективных исследований новых решений, которые будут отрабатываться на виртуальных моделях, а не на образцах. ВИСТ создаст возможность ДЛЯ исследования эффективности применения новых идей еще на стадии их теоретической проработки. Появится возможность исследования новых направлений до их технологической реализации, что позволит делать выводы о перспективности предлагаемых идей.

ВИСТ призван, на предварительных этапах создания новых приборов, заменить натурные (полигонные и стендовые) испытания, что существенно сократит время разработки и затраты на ее проведение. За счет

многовариантности виртуальных исследований, создаваемый прибор будет гарантированно отвечать заданным критериям качества.

ВИСТ интерфейс Реализуемый пользовательский обеспечит проектировщик, визуализацию работы проектируемого прибора, T.e. использующий ВИСТ, будет видеть на экране компьютерного монитора именно то изображение, которое реально создает в будущем разрабатываемый прибор. Комплекс будет снабжен дружественным пользовательским интерфейсом, работающим через систему меню и подсказок. Предполагается сделать его открытым для периодического обновления. Комплекс должен быть легко адаптируемым к условиям конкретного потребителя.

В результате реализации проекта будет обеспечено решение следующих задач:

- Автоматизированное оптимальное проектирование новых приборов;
- Компьютерные исследования, как создаваемых, так и уже существующих (предлагаемых на рынке) ОЭС, с точки зрения целесообразности разработки (приобретения) нового прибора;
- Сравнение различных вариантов ОЭС между собой с целью выбора наиболее перспективного для конкретного применения;
- Проверка работоспособности предлагаемых научно-технических решений еще до их технологического воплощения, что особенно важно в эпоху революционного развития нанотехнологий;
 - Отработка на модели цифровых алгоритмов обработки изображений;
- Отработка на модели методик настройки ИК-систем, работающих с невидимым излучением;
 - Применение в учебных целях в качестве виртуального тренажера.

Одним из очевидных преимуществ ВИСТ является возможность демонстрации «виртуальных» перспективных изделий потенциальным потребителям еще до создания опытных образцов, что позволит наглядно убедить «заказчиков» в необходимости финансирования работ.

В каких случаях наиболее эффективно применение компьютерного моделирования современных ОЭП. Профессор Якушенков Ю.Г. (МИИГАиК) дает следующий ответ на этот вопрос (из частного сообщения):

«Моделирование, по крайней мере, полезно, если не необходимо:

- 1. На начальных этапах проектирования новых систем, когда нужно прогнозировать ожидаемые результаты разработки.
- 2. При оценки работоспособности имеющихся систем в новых условиях эксплуатации (например, при изменении условий работы, дальности, видов целей, фонов, помех и т. д.). Хорошие примеры появились в 2009 г. в ряде публикаций американцев об исследованиях некоторых тепловизионных систем в различных условиях (для обнаружения и контроля в городе, на воде и др.). Но для этих натурных исследований проводились длительные тренировки многочисленных наблюдателей, емкий эксперимент и т. д. Результаты

подтвердили адекватность их хорошо известной модели NVTherm. Есть ли у нас большие деньги на такие работы?

- 3. При конструкторской модернизации ранее разработанных систем, например, при замене элементной базе.
- 4. При невозможности провести натурные или имитационные испытания, например, в космических условиях, да и на земле при дефиците времени и средств, при сравнении различных конструкций (что, кстати, мы делали при сопоставлении различных тепловизионных систем, исследованных на полигоне и с помощью нашей модели).

И т. п. и т. д.».

Хотелось бы добавить следующее. Развитие оптико-электронного приборостроения предполагает, скорее всего, разработку в ближайшие годы исключающих человека приборов полностью ИЗ процесса обработки видеоинформации принятия решений. Здесь компьютерного И роль моделирования будет являться решающей. В этой связи, задача компьютерного моделирования ОЭП должна сводиться не столько к автоматизированному проектированию ОЭП (это и так очевидно, но это, все-таки, вспомогательная задача), сколько к созданию программ-симуляторов (эмуляторов), которые воссоздают в лабораторных условиях на обычном компьютере все возможные ситуации работы прибора и отрабатывают алгоритмы, которые переводятся в машинные коды и встраиваются в создаваемый прибор на аппаратном уровне. Таким образом, сам процесс моделирования становится технологическим звеном при разработке нового прибора, поскольку программы-эмуляторы можно считать неотъемлемой частью такого прибора.

© Е.В. Грицкевич, П.А. Звягинцева, О.В. Урбанский, 2010

УДК 620:191.33:681.7.624.012 Б.Н. Рахимов, О.К. Ушаков СГГА, Новосибирск А.М. Расулов Ферганский филиал ТУИТ, Фергана

РАСЧЕТ И РАЗРАБОТКА СЕМИКАНАЛЬНОЙ ВОЛОКОННО-ОПТИЧЕСКОЙ СИСТЕМЫ ДЛЯ ОБНАРУЖЕНИЯ, РЕГИСТРАЦИИ ЗАРОЖДЕНИЯ И РАСПРОСТРАНЕНИЯ УСТАЛОСТНЫХ ТРЕЩИН ЭЛЕМЕНТОВ МЕХАНИЧЕСКИХ КОНСТРУКЦИЙ

В данной работе исследуется волоконно-оптический тракт с целью разработки семиканальной оптоэлектронных систем обнаружения, регистрации зарождения и распространения усталостных трещин элементов механических конструкций. Изложена методика расчета потери энергии оптоволокна и приведены результаты расчета, с целью использования в качестве датчика усталостной повреждаемости элементов механических конструкций.

B.N. Rakhimov, O.K. Ushakov SSGA, Novosibirsk A.M. Rasulov Fergana branch of Tashkent university of information technologies

CALCULATION AND DEVELOPMENT OF THE SEVEN-CHANNELS FIBER-OPTIC SYSTEM FOR DETECTING, BIRTH RECORDING AND DISTRIBUTION OF THE FATIGUE CRACKS IN MECHANICAL STRUCTURES ELEMENTS

The paper presents investigation of the fiber optic path to be used for the development of the seven-channels optoelectronic systems for detecting, birth recording and distribution of the fatigue cracks in mechanical structures elements. The techniques for the optical fiber energy loss calculation are offered. The calculation results to be applied as a fatigue failure gage for the mechanical structures elements are given.

В настоящее время разрабатываются средства мониторинга физикохимического состояния различных материалов и технологических процессов. Этими средствами обеспечивается регулярное целенаправленное получение объективной информации об условиях эксплуатации технических объектов и дифференцированный учет расходования их ресурса. Самым массовым (благодаря сравнительной простоте и дешевизне) средством мониторинга могут стать оптоэлектронные системы на основе полупроводниковых светоизлучающих диодов (СИД), лазерных диодов (ЛД), приёмников оптического излучения (ПОИ) и волоконных световодов (ВС).

При учете всех видов потерь энергии в световоде на пути от источника излучения к приемнику коэффициент передачи световода определяется как отношение прошедшего через него потока энергии излучения Φ к падающему Φ_0 , т.е.

$$f = \frac{\Phi}{\Phi_o}.$$
 (1)

Распределение потока энергии источника излучения по углом φ_0 и U_0 (рис. 1) можно описать формулой $\Phi = \Phi(\varphi_0, U_0)$. Тогда для малой часта потока энергии $d^2 \Phi$, распространяющейся внутри элемента телесного угла d^2 w-sin u_2 dud Ψ , будем иметь следующее выражение:

$$d^2 \phi = I \sin u_1 du_1 d\varphi_0$$
, (2) где $I(\varphi_0, U_1)$ – сила излучения.

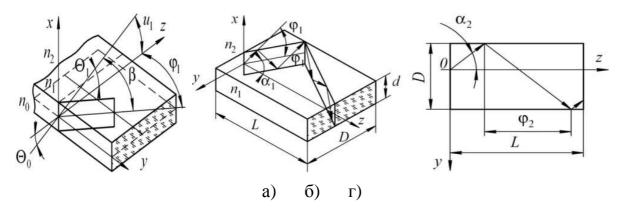


Рис. 1. а) распространение света в плоскопараллельной световодной пластине; б) схема прохождения луча через прямоугольный световод; г) проекция луча, проходящего через прямоугольный световод, на координатную плоскость YOZ

Так как поперечные размеры световода намного превышают длину волны излучения, то распространение света по световоду будет происходить на законов геометрической оптики. При рассмотрении основании светопропускания на основании законов геометрической оптики все потери энергии излучения можно подразделить на следующие виды 1) потери на входном и выходном торцах световода за счет отражения (френоневские потери); 2) потери внутри материала световода за счет поглощения и рассеивания; 3) потери за счет того, что при каждом полном внутреннем отражении коэффициент отражения не равен единице, а несколько меньше ее. Хотя при каждом отражении потери могут быть весьма малыми, при большом число отражений, т.е. большой джине световода и малом ее поперечном сечении, они значительно снижают светопропускание.

Френелевсние потери определяются коэффициентом отражения при падении света на входной и выходной торцы световода.

Если падающий свет естественный, коэффициент отражения от торца световода можно вычислить по формулам Френеля. Если торцы помещены в

одну и ту же среду и коэффициент отражения от одного торца пройдет часть энергии излучения, равная. $(1-R_0)$.

Потери энергии за счет поглощения и рассеивания учитываются экспоненциальным множителем вида:

Exp
$$(-\varepsilon P)$$
, (3)

где E – показатель ослабления света материалам световода; $P = P(\varphi_0, Q)$ – путь, проходимый в световода лучам, распространяющимся в направлении φ_0, Θ .

Потери энергии за счет неполноты отражения от боковых направляющих поверхностей световода можно учесть множителем вида $R^{\text{от}}$, где R – коэффициент отражения при одном отражении; om – число отражений.

Следует отметить, что R в общем случае является сложной функцией углов ϕ , и Θ .

Учитывая приведенные формулы для различных кодов потерь энергии излучения, для малой части потока энергии $d^2 \varphi$, распространяющее внутри телесного угла $d^2 w$ и прошедшеfo o-через световод в направлении φ ,U справедливо выражение;

$$d^2\phi = I(1 - R_{\Phi})e^{-ep} \bullet R^K \sin \Theta_1 d\Theta_1 d\varphi_1$$
 (4)

если входной торец световода освещается источником, излучающим в пределах углов от ϕ' до ϕ'' и Θ' до Θ'' , то вследствие преломления лучи световода будут распространяться в пределах углов ϕ' , до ϕ'' , и от Θ ' до Θ ". Переход от углов ϕ , Θ к углом ϕ и Θ определяется законом преломления.

Для нахождения полной энергии излучения, прошедшей через световод в некотором конечном телесном угле, интегрировании следует производить в пределах углом от ϕ' до ϕ'' и от Θ ' до Θ ", т. е.

$$\Phi = \int_{\varphi_1}^{\varphi_1} \int_{\Theta_1}^{\Theta_1} I(1 - R_{\Phi})^2 \cdot e^{-\varepsilon P} \cdot R^k \cdot \sin \Theta_1 d\Theta_1 d\varphi_1$$
 (5)

Поток энергии излучения, падающей на входной торец световода, будет определятся формулой.

$$\boldsymbol{\varPhi}_{0} = \int\limits_{\boldsymbol{\varphi}_{0}^{II}}^{\boldsymbol{H}} \boldsymbol{\Theta}_{0}^{\boldsymbol{H}} \quad \boldsymbol{I}_{1} \sin \boldsymbol{\Theta}_{0} d\boldsymbol{\Theta}_{0} d\boldsymbol{\varphi}_{0} = \int\limits_{\boldsymbol{\varphi}_{1}^{II}}^{\boldsymbol{H}} \boldsymbol{\Theta}_{1}^{\boldsymbol{I}} \sin \boldsymbol{\Theta}_{1} d\boldsymbol{\Theta}_{1} d\boldsymbol{\varphi}_{1} \quad \boldsymbol{G}_{1}^{\boldsymbol{G}} \boldsymbol{\Theta}_{1}^{\boldsymbol{G}} \boldsymbol{\Theta}_{1}^{\boldsymbol{G}}$$

Светопропускание световода определяется отношением прошедшего через него потока энергии Ф к падающему, т. е.

$$\tau = \frac{\varphi_{1}^{II} \Theta_{1}^{II}}{\varphi_{1}^{1} \Theta_{1}^{1}} I(1-R_{\phi})^{2} \bullet e^{-\varepsilon P} \bullet R^{K} \sin \Theta_{1} d\Theta_{1} d\varphi_{1}}{\varphi_{1}^{II} \Theta_{1}^{II}} (7)$$

$$\tau = \frac{\varphi_{1}^{1} \Theta_{1}^{1}}{\varphi_{1}^{II} \Theta_{1}^{II}} \Theta_{1}^{II}$$

$$\varphi_{1}^{1} \Theta_{1}^{1}$$

$$\varphi_{1}^{1} \Theta_{1}^{1}$$

На основе расчета нами предлагается семиканальная волоконно-оптическая система для обнаружения, регистрации зарождения и распространения усталостных трещин элементов механических конструкций (рис.1).

Количество датчиков, подключаемых к устройству, может быть от одного до семи, причем датчики не обязательно должны быть одного типа, т.е. устройство позволяет измерять одновременно разные физические параметры, для которых имеется соответствующий оптоволоконный преобразователь (датчик). В каждый из семи оптических каналов датчиков поочередно подается световой импульс и измеряется величина оптического сигнала на выходе канала. Изменения оптического сигнала связаны с изменениями измеряемой физической величины. Оптические сигналы преобразуются устройством сначала в электрические сигналы с помощью фотоприемников, а затем в цифровой код с помощью аналого-цифрового преобразователя микроконтроллера, являющегося ядром измерительного устройства.

Программа, заложенная в микроконтроллер, определяет порядок и скорость опроса датчиков, выполняет автоматическую коррекцию нуля АЦП и усредняет измеренные значения для каждого датчика. Измерения производятся циклами, и в каждом цикле измеряются сигналы со всех семи измерительных каналов, вне зависимости от того, подключен или нет к данному каналу датчик. Полученные данные усредняются ΜΟΓΥΤ быть переданы устройства последовательный интерфейс RS232 на управляющий персональный компьютер. Инициатором передачи является компьютер, который запрашивает данные с требуемого канала передачей в устройство номера этого канала (от 0 до 7) в коде ASCII. В ответ на номер канала устройство передает в компьютер четыре байта, соответствующие усредненному значению измеренной величины для данного канала. Каждый из четырех байт представляет шестнадцатеричную цифру в коде ASCII, причем первой передается старшая цифра, а последней – младшая.

Номера каналов от 0 до 6 соответствуют измерительным каналам, а номер 7 — уровню нуля в отсутствии сигналов по всем оптическим каналам устройства. Данные по каналу 7 используются для контроля правильности работы приемно-усилительного тракта и АЦП.

Порядок опроса каналов со стороны компьютера значения не имеет и может быть любым и с любыми интервалами времени опроса. Интервалы и порядок опроса определяются исходя из конкретной задачи, решаемой с помощью устройства. Так, например, при статических нагружениях испытуемой конструкции имеет смысл производить опрос раз в 10-20 секунд, а при испытаниях оптических волокон при постоянной нагрузке или

фиксированном удлинении опрос производится через 10-15 минут. Само измерительное устройство осуществляет опрос каналов в непрерывном режиме, причем время опроса одного канала (включая канал 7) составляет около двух миллисекунд. Этого времени достаточно, чтобы аналоговый сигнал на выходе преобразователя фототока приемников в напряжение, пропорциональное мощности оптического сигнала прошедшего через оптоволокно, успел установиться до начала цикла аналого-цифрового преобразования. Аналого-цифровое преобразование длится около 200 микросекунд, после чего в памяти микроконтроллера обновляются данные для выбранного канала. Набранные по восьми измерениям данные для каждого из каналов усредняются, и именно усредненные значения передаются через последовательный интерфейс по запросу от компьютера.

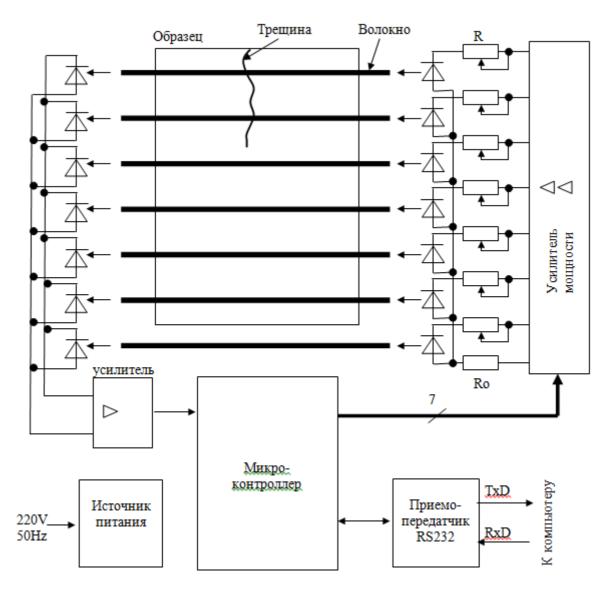


Рис. 2. Структурная схема семиканальной волоконно-оптической системы для обнаружения, регистрации зарождения и распространения усталостных трещин элементов механических конструкций

В заключение отметим, что описанное устройство применимо не только для решения задач мониторинга трещинообразования в конструкциях, но может

быть использовано с широким кругом оптоволоконных датчиков, в которых используется модуляция светового потока В волокне контролируемой физической величиной. Кроме того, каждое оптическое волокно может быть снабжено собственным излучателем и приемником, не входящими в состав блоков, описанных ранее. Пространственно одно или несколько таких волокон могут находиться отдельно от других, а к измерительному устройству такой датчик может подключаться через отдельные кабели. Возможно, также, увеличение количества измерительных каналов до нескольких десятков. Конечно, это потребует изменений программного обеспечения и в контроллере измерительного устройства, и в компьютере, с которым устройство должно быть связано.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Артуюпов, К.Б. Волоконно-оптические датчики параметров технологических процессов / К.Б. Артуюпов // М.: Информприбор. 1989. Вып. $1.-C.\ 10-11.$
- 2. Рахимов Н.Р. Применение оптического волокна в системе оценки усталостной повреждаемости элементов конструкций / Изв. вузов. Приборостроение, 2005. Т. 48, № 1. С. 39–43.
- 3. Серьёзнов А.Н., Рахимов Н.Р. / Исследование волоконных световодов для неразрушающего контроля целостности машиностроительных конструкций / кн. Современные проблемы геодезии и оптики. Новосибирск, 2004. С. 158–163.
- 4. Рахимов Н.Р., Серьёзнов А.Н. Способ определения мест предразрушения конструкций / Патент РФ №2247412, БИ. 2005. № 8.

© Б.Н. Рахимов, О.К. Ушаков, А.М. Расулов, 2010

УДК 621.382:530.93:365.2 *Н.Р. Рахимов, Д.Д. Алижанов* СГГА, Новосибирск

ПРИЕМНИКИ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ НА ОСНОВЕ ПОЛУПРОВОДНИКОВЫХ ПЛЕНОК С АНОМАЛЬНЫМ ВЫСОКИМ ФОТОНАПРЯЖЕНИЕМ

В настоящей работе рассмотрены методы создания приемника оптического излучения (ПОИ) на основе АФН-пленок, с повышенной светочувствительностью и надёжностью работы. Изготовления АФН-пленок из соединенных GaP, GaAs, CdSe, CdTe, CdTe: Ад в качестве светочувствительного элемента автономного приёмника

N.R. Rakhimov, D.D. Alizhanov SSGA, Novosibirsk

OPTICAL RECEIVERS ON THE BASIS OF SEMICONDUCTOR FILMS WITH ABNORMALLY HIGH PHOTOVOLTAGE

The paper deals with the methods of creating the optical receiver on the basis of reliable films with abnormally high photovoltage and speed. The films are made of GaP, GaAs, CdSe, CdTe:Ag compounds as photosensitive elements of an autonomous receiver.

АФН-пленок (аномального высокого фотонапряжения) [1-4] представляют собой функциональный преобразователь, трансформирующий световой поток интенсивности Φ_0 в аномально высокое фотонапряжение $V_{A\Phi H}$. Соответственно принятой модели [5] эта трансформация складывается из трех этапов.

Во-первых, создания фототока $I_{\Phi 0}$, обусловленного фотогенерацией и пространственным разделением неравновесных носителей на каждом микро-р-n-переходе. Во-вторых, возникновения элементарных напряжений на микро-р-n-переходах в результате накопления объемных зарядов, создаваемых фототоком. В-третьих, формирования аномально большого фотонапряжения путем суммирования элементарных фотонапряжений на p-n-переходах.

В настоящие статье нами рассмотрена методы создания приемника оптического излучения (ПОИ) на основе АФН-пленок, с повышенной светочувствительностью и надёжностью работы.

В работах [1-5] получены АФН – пленок из различных полупроводниковых материалов с широкой и узкой запрещенной зоной – CdTe, Si, Ge, GaAs, GaP, Se, PbS, а также из других халькогенидных сплавов, используя метод вакуумного испарения, Однако, пленки полученные этим методом обладают низким генерируемым АФ напряжением.

Известно, что технологический режим получения $A\Phi H$ – пленок зависит от большого числа параметров, таких, как температура подложки и скорость испарения, угол напыления, толщина пленки, состав и давление остаточных газов в вакуумной камере, условия термической обработки пленок после напыления и т. д.

Исследованные АФН-пленки CdTe получились из порошкообразного CdTe в вакууме по оптимальной технологией при температуре подложки $200 \div 250$ °C и толщине пленок в пределах $0.7 \div 1.5$ мкм.

При освещении обратной стороны АФН-пленки источником света интенсивностью $\sim 8\times 10 \Box 2$ Вт/см2 генерировались АФН до 300 В/см2. Это означает, что при отражении света тоже генерируется АФН. Если покрыть обратную сторону стеклянной или кварцевой подложки отражающим покрытием Ag, величина АФН-эффекта должна измениться. Нанесение на противоположную сторону стеклянной подложки отражающего слоя из серебра производится при давлении $10\Box 4$ мм рт. ст. и температуре подложки $250\div 600^{\circ}$ С для того, чтобы уменьшить окисление отражающего слоя из серебра. Изготовление такой пленки осуществляется в следующей последовательности: на одну сторону стеклянной подложки, расположенной под углом 45° к направлению молекулярного пучка, при температуре $420\div 600^{\circ}$ С и давлении 10-5 мм рт. ст. наносят слой из теллурида кадмия толщиной 0,2 мкм, затем на противоположную сторону стеклянной подложки наносят отражающий слой из серебра толщиной 1 мкм термическим испарением при температуре подложки $250\div 300^{\circ}$ С и давлении $10\Box 4$ мм рт. ст.

На рис. 1. приведено изображение аномально фотонапряженной пленки. Падающий поток света Φ_0 генерирует фотонапряжение АФН. Часть потока света Φ_1 , проходя через подложку, попадает на слой серебра и, отражаясь, попадает на обратную сторону пленки теллурида кадмия, в результате чего происходит дополнительное поглощение света и в связи с этим увеличивается генерируемое фотонапряжение $V_{\rm A\Phi H}$

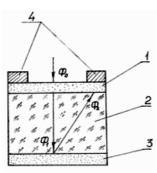


Рис. 1. АФН-пленка с отражающим серебряным слоем

I — фоточувствительный слой на CdTe; 2 — стеклянная подложка; 3 — отражающий слой из серебра; 4 — металлические контакты; Φ_0 — падающий поток света; Φ_1 — проходящий поток через слой CdTe; Φ_2 — отражающий поток из Ag

Пример 1. Фоточувствительный слой наносят термическим испарением кристаллического теллурида кадмия при температуре 400° C в вакууме 10^{-4} мм

рт. ст. на стеклянную подложку, расположенную под углом 45° к направлению молекулярного пучка, до толщины пленки 0,2 мкм. Затем на противоположную сторону стеклянной подложки наносят отражающий слой из серебра термическим испарением при температуре подложки 250° С и вакууме 10^{-4} мм рт. ст. Толщина пленки должна составлять примерно 1 мкм. Величина аномального фотонапряжения в этом случае будет 215 В при освещенности 10^{4} лк.

Корпус АФН-приёмника должен выполнять две функции. Первой функцией является герметизация АФН-пленки, т. е. светочувствительного элемента в нейтральной среде для защиты от атмосферных влияний и предотвращения нестабильности параметров прибора. Второй функцией является обеспечение освещения нужной области чувствительного элемента. Следовательно, корпус АФН-приёмника должен быть не только герметичным, но и пропускать излучения с длинами волн, лежащими в области спектральной характеристики прибора [38].

Исходя из этого, первым типом корпуса для АФН-приёмника является цельностеклянный корпус. Стеклянные корпуса издавна достаточно широко применяются для фотоприёмников, например, для фототранзисторов серии ФТ-3Г, так как они являются наиболее герметичными.

При этом технология их изготовления проста, что обеспечивает низкую стоимость. Спектральная характеристика пропускания свинцового стекла приведена на рис. 2. Как видно, оно пропускает излучение с длинами волн до 2,8 мкм. С этой точки зрения стеклянные корпуса могут быть рационально применены для АФН-приемников. Рассмотрим технологию изготовления стеклянного корпуса для АФН-приемника, который представлен на рис. 3.

Он состоит из трех частей \square стеклянной крышки, выводов со стеклянными бусами и чувствительного элемента.

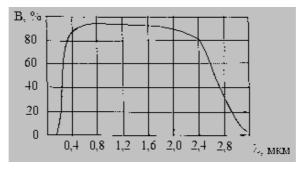


Рис. 2. Спектр пропускания свинцового стекла

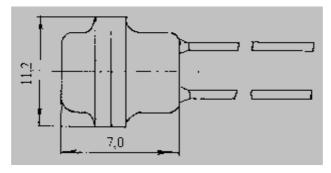


Рис. 3. Внешний вид АФН-приемника

Стекло диаметром 8 мм устанавливается герметично на крышку диаметром 11,2 мм. Вторая часть корпуса изготавливается следующим образом. На медную проволоку из сплава FeNiCu диаметром 0,25 мм, выгнутую в виде буквы «Г» и покрытую бурой, надевают два кусочка трубки из свинцового стекла размером и на расстоянии согласно рис. 3. Затем, на газокислородной горелке их расплавляют с целью образования двух бус, через которые проходят плотные выводы.

После изготовления бус проволока очищается от буры путем кипячения в лимонной кислоте или погружением в 25 % ной водный раствор азотной кислоты. Очищенные выводы для защиты от коррозии покрываются золотом или никелируются электролитическим способом. После обрезания до нужных размеров (42 мм) вывод готов для монтажа чувствительного элемента. Металлические контакты АФН-приёмника создаются сплавом олова с примесью 1 % сурьмы или 1 % галлия. После создания металлических контактов на наружных областях пленки она монтируется в оправке. Далее корпус герметизируется пайкой, стеклянная крышка устанавливается сверху в сухом воздухе. По этому методу изготовлен автономный приёмник оптического излучения АФ-4М [63].

Основные технические данные

Чувствительность при I_V = 1лк, В 5 Долговечность, ч, не менее 10000 Внутреннее сопротивление, Ом 10^{14} Габариты, мм $11 \times 11 \times 49$ Быстродействие, с 1 Масса, г, не более 2,0

На базе описанных выше пленок из соединений GaP, GaAs, CdSe, CdTe, CdTe: Ag были изготовлены готовые A Φ H-приёмники. В качестве светочувствительного элемента автономного приёмника были использованы пленки размером 4×2 мм.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Рахимов, Н.Р. АФН-пленки и их применение /Н.Р. Рахимов, А.Н. Серьёзнов. Новосибирск: СибНИА, 2005. 64 с.
- 2. Рахимов, Н.Р. Приемники оптического излучения на основе АФН-пленок / Н.Р. Рахимов, Л.К. Мамадалиева // Изв. вузов. Приборостроение. -2004. T 47, № 8. -C. 53–56.
- 3. Патент РУз ІАР 02610 от 25.02.2003. Способ получения фотогенераторов / Н.Р. Рахимов, А.М. Касымахунова, Ш.Ю. Усманов.
- 4. Фридкин, В.М. Фотосегнетоэлектрики / В.М. Фридкин. М.: Наука, 1979.
- 5. Адирович, Э.И. Фотоэлектрические явления в полупроводниках и оптоэлектроника / Э.И. Адирович. Ташкент: Фан, 1972.

УДК 621.317:620.179.1 *H.Р. Рахимов, И.А. Сатволдиев* СГГА, Новосибирск

ПРИМЕНЕНИЕ СОВРЕМЕННЫХ ЛАЗЕРНЫХ ДИОДОВ ДЛЯ СОЗДАНИЯ ОПТРОНА ОТКРЫТОГО КАНАЛА

В статье описаны перспективы оптоэлектронного приборостроения, материалы полупроводникового лазера, принципы действия, а также режим работы лазерного диода.

N.R. Rakhimov, I.A. Satvodiyev SSGA, Novosibirsk

APPLICATION OF MODERN LASER DIODES FOR DEVELOPING OPEN CHANNEL OPTICAL COUPLER

The progressive sides of opto-electronic device construction, materials of semiconductor laser, configuration, Principe of laser diode action are described. The salvation of the laser diode work is given also.

Оптрон открытого канала, оптронная интегральная микросхема - эти понятия с каждым годом становятся известными все более широким кругам специалистов в области радио- и оптоэлектроники. Развитие оптронной техники уверенно вступило в стадию массового промышленного производства. Оптроны закрытого канала все чаще находят применение в электронной аппаратуре.

Оптронами называют оптоэлектронные приборы, в которых имеются источник и приемник оптического излучения (ПОИ) (излучатель и ПОИ) с тем или иным видом оптической и электрической связи между ними, конструктивно связанные друг с другом.

Принцип действия оптронов любого вида основан на следующем. В излучателе энергия электрического сигнала преобразуется в световую, в фотоприемнике, наоборот, световой сигнал вызывает электрический отклик.

В настоящее время за рубежом серийно выпускаются десятки марок полупроводниковых лазеров. Например, американский фирмой "AT&T Bell Laboratories" выпускаются серийные лазерные диоды (ЛД), так называемые «рассеченный лазер со связанными резонаторами» (cleaved – coupled – cavity laser) или по буквам английского названия « \mathbb{C}^3 - лазер» [1,2].

Используемые в полупроводниковом лазере полупрозрачные зеркала — это современная модификация оптического прибора, изобретенного в 1896 г. Французскими ученными Ш.Фабри и А.Перо. Поэтому ограничения, которые

относятся к этому прибору (интерферометр Фабри - Перо) также относятся к лазеру.

Материалом для полупроводникового лазера служит четвертная система индий – фосфор – мышьяк.

В области p-n-перехода исчезнет одновременное вырождение электронов и дырок, а, следовательно, и инверсия населенностей. Для того, чтобы снова создать инверсию населенностей в p-n-переходе, нужно приложить к переходу электрическое напряжение U, как показано на рис. 1.

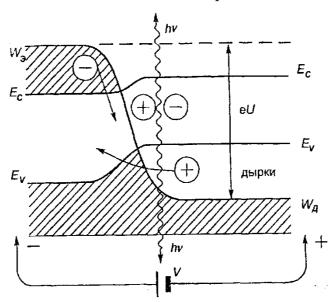


Рис. 1. Энергетическая схема *p-n*-перехода при наложении напряжения U:

$$W_{\scriptscriptstyle 3}$$
 и $W_{\scriptscriptstyle Д}$ – уровни Ферми; е – заряд электрона

При этом через p-n-переход потечет электрический ток, состоящий из двух компонентов: электронов и дырок, двигающихся навстречу друг другу. Эти два потока частиц встречаются в тонком слое перехода и рекомбинируют, излучая свет. Это означает, что число вынужденно испущенных фотонов будет превышать число фотонов поглощенных.

Лучшие результаты дает лазерный p-n-переход в GaAs. Он может излучать до 10 Вт когерентного света с очень малой площади (толщина излучаемого слоя p-n-перехода — 2 мкм, а длина излучающей части ≈ 1 мкм). Мощность, снимаемая с 1 см², может достигать до 100 кВт. Существенно, что такие мощности удается получить в непрерывном режиме, т. е. при питании полупроводниковых лазеров постоянным током.

В спонтанных процессах носитель заряда при переходе из одной энергетической зоны в другую поглощает или испускает фотон. Энергия этого фотона определяется ΔE — шириной запрещенной зоны полупроводника [3,4]. В соответствии с квантовой теорией возбужденный электрон, инжектированный в базовую область, рекомбинируя с дыркой, и спускает квант энергии излучения. При этом максимальная энергия, которая может выделиться при рекомбинации, равна ширине запрещенной зоны данного полупроводника:

$$\Delta E = hv$$

где h — постоянная Планка; ν — частота колебаний электромагнитной энергии Основные параметры инжекционных лазеров приведены в табл. 1.

Длина волны (λ) фотона определяется его энергией. Поэтому для получения нужной λ , надо выбрать конкретный полупроводниковый материал.

В ближайшие годы на базе уже имеющихся излучателей будет созданы и апробированы новые лазерные терапевтические аппараты на следующих длинах волн: λ (фиолетовый) = 308 нм, λ (зеленый) = 532-538 нм, λ = 570 нм, λ = 780 нм, λ = 890 нм, λ = 1,26-1,28 нм.

Таблица 1

№№ п/п	Тип полупроводников	Рабочая температура, °С	Длина волны излучения, нм	Цвет излучения
1	ZnS	80	330,0	ультрафиолетовый
2	ZnSe	80	453,0	фиолетовый
3	CdS	4–300	485,0-796,0	зеленый
4	CdSe	80	610,0	оранжевый
5	CdSe	80	695,0	красный
6	GaTe	4–80	790,0–796,0	красный
7	GaPAs	80–300	830,0-536,0	темно-красный
8	GaAs	4–300	820,0–900,0	инфракрасный
9	GaSb	20	1 530,0	инфракрасный
10	InAs	20	3 008,0	инфракрасный
11	InSb	20	4 995,0	инфракрасный
12	Te	20	3 844,0	инфракрасный
13	PbS	4	4 270,0	инфракрасный
14	PbTe	4	6 410,0	инфракрасный
15	PbSe	4	8 550,0	инфракрасный

Современное оптоэлектронное устройство состоит из трех основных элементов: а) излучателя (лампа накаливания, светоизлучающий диод (СИД), лазерный диод и т. д.); б) различных линз (линза в виде полушара, шарообразные, цилиндрические линзы и т. п.); в) приемников оптического излучения (ПОИ) (фоторезисторы, фототранзисторы, фотодиоды, фототиристоры, АФН – приемники и п.).

Основными фотоприемниками для оптронов являются кремниевые приборы с p-п{p-i-«)-структурами, применительно к которым и ведутся физические и конструкторско-технологические исследования.

При конструировании оптронов исследования концентрируются в следующих направлениях:

- Анализ распространения излучения в оптически неоднородных средах;
- Высокие диэлектрические характеристики;
- Хорошая адгезия к полупроводникам излучателя и фотоприемника;

- Решение проблемы согласования элементов оптронов (излучатель, приемник, оптическая среда) по спектральным, электрическим характеристикам;
- Эксплуатационным, надежностным характеристикам и технологическим показателям;
- Разработка и промышленное освоение микроминиатюрных конструкций оптронов, пригодных для механизации и автоматизации сборочных процессов.

Применение современных лазерных диодов для создания оптрона открытого канала обладает следующими качествами:

- 1. Относительно направленным угловым распределением излучения (угол при вершине конуса пучка света, выходящего из активной области ЛД, может составлять $10\div30^0$), определяемым модовой структурной пучка света на выходе из резонатора в диоде.
- 2. Относительно малым временем отклика при модуляции (0.01÷1 нс), обусловленным сильным взаимодействием света и носителей в процессе стимулированной рекомбинации.
- 3. Нелинейностью соотношения между рабочим током и излучением на выходе, если сила рабочего тока не достигает своего порогового значения, необходимого для возникновения стимулированного излучения.
- 4. Узким спектром излучения $(0.2 \div 2 \text{ нм для лазера многоводного и менее} 0.01 нм для одномодового).$

Полупроводниковый лазер — это следующий этап развития оптоэлектроники, и его эксплуатационные характеристики и скрытые в нем возможности могут оказаться весьма полезными во многих областях науки и техники.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Рахимов, Н.Р. АФН-пленки и их применение / Н.Р. Рахимов, А.Н. Серьёзнов: монография. Новосибирск: СибНИА, 2005. 64с.
- 2. Рахимов Н.Р. Оптоэлектронные датчики на основе АФН-эффекта / Н.Р. Рахимов, О.К. Ушаков. Новосибирск: СГГА, 2009 148с.
- 3. Ларюшин, А.И. Оптоэлектроника в промышленности и в медицине / А.И. Ларюшин. Казань: 1997 320 с.
- 4. Курбатов, Л.Н. Оптоэлектроника видимого и инфракрасного диапазонов спектра / Л.Н. Курбатов. М.: Изд-во МФТИ, 1999. 320 с.

© Н.Р. Рахимов, И.А. Сатволдиев, 2010

УДК 537.533.3,681.7.015.

И.И. Кремис, В.Н. Федоринин, В.М. Тымкул

Новосибирский филиал Института физики полупроводников СО РАН «Конструкторско-технологический институт прикладной микроэлектроники», Новосибирск

ПРИМЕНЕНИЕ МЕДИАННОЙ ФИЛЬТРАЦИИ В ПРОЦЕДУРЕ ВИЗУАЛИЗАЦИИ ТЕПЛОВИЗИОННОГО ИЗОБРАЖЕНИЯ, ФОРМИРУЕМОГО МАТРИЧНЫМИ КРТ ФОТОПРИЕМНИКАМИ

"гистограммный" Рассмотрен метод визуализации тепловизионного изображения, формируемого матричными приемниками ИК-диапазона на фотодиодах из полупроводникового соединения кадмий – ртуть – теллур (КРТ). медианной фильтрации для устранения влияния Показано применение пикселей фотоприемника качество функционирования дефектных на "гистограммного" метода визуализации изображения.

I.I. Kremis, V.N.Fedorinin, V.M. Tymkul

Novosibirsk Branch of the Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, "Technological Design Institute of Applied Microelectronics", Novosibirsk, Russia

APPLICATION MEDIAN OF THE FILTRATION IN PROCEDURE OF VISUALIZATION INFRARED OF THE IMAGE RECEIVED WITH MATRIX PHOTODETECTORS

It is considered histogram a visualisation method infrared images of the received from matrix receivers on photo diodes from semi-conductor connection HgCdTe. Application median is shown a filtration for elimination of influence of deficiency of pixels of a photodetector on quality of functioning histogram a method of visualisation of the image.

Тепловизионные приборы (ТВП) в настоящее время получили широкое распространение и используются в самых разных сферах человеческой деятельности. Принцип действия тепловизионных приборов основан на преобразовании теплового излучения от объектов и местности в видимое изображение. Для визуализации тепловизионного изображения могут применяться как монохромные телевизионные мониторы, использующие аналоговый сигнал по ГОСТ 7485-92 [1], так и мониторы поддерживающие стандарты сигналов VESA и VGA. Кроме того, для непосредственной передачи изображения из ТВП в различные устройства спецприменения, как правило, в ТВП используют специализированный цифровой интерфейс, состоящий из сигналов синхронизации и данных желаемой разрядности. Разрядность данных

определяется требованиями к количеству градаций серого, необходимых для качественного воспроизведения изображения на экране устройства визуализации. Так, в системе ЦОС УЭМ показанной в [1,2], используется 12-ти разрядный ЦАП, тем самым определяя рабочий диапазон 0...4095, при этом значение 0 соответствует при визуализации уровню черного, а значение 4095 - уровню белого.

Все перечисленные выше форматы передачи данных, для комфортного зрительного восприятия тепловизионного изображения, требуют согласования динамического диапазона сигнала изображения и экрана, на котором выполняется визуализация.

Согласование динамического диапазона заключается в выполнении следующих арифметических операций [2]:

$$Y = \frac{X - MIN}{MAX} \cdot 4095, \quad (1)$$

где: 4095 — значение определяется диапазоном, с которым необходимо согласовать тепловизионное изображение (значение 4095 соответствует 12 разрядному представлению выходных данных), Y — выходной (согласованный) сигнал, X — сигнал изображения, требующий согласования, MAX, MIN — максимальное и минимальное значение границы визуализации гистограммы.

Как правило, для визуализации наиболее существенной части наблюдаемой применяется "гистограммный" метод. "Гистограммный" визуализации изображения заключается в том, что проводится анализ гистограммы изображения и определяются значения гистограммы MAX и MIN соответствующие краям наиболее информативного изображения. Далее для преобразования по формуле (1) используется только изображение, расположенное в диапазоне между MAX и MIN, причем, задавая порог p, определение границ MAX и MIN достаточно просто автоматизировать (рис. 1).

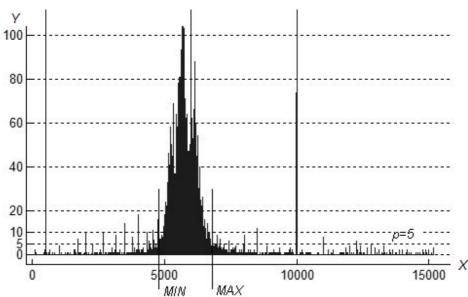


Рис. 1. Исходная гистограмма изображения

Применение "гистограммного" метода способствует существенному повышению восприятия наблюдаемой тепловой сцены. Однако применение данного метода требует равномерного распределения гистограммы, для которой каждое значение количества элементов по оси ординат (оси Y) соответствует количеству элементов фотоприемного устройства (ФПУ) с адекватным откликом на тепловое излучение объектов наблюдения. Применение данного метода для изображения, полученного с фотоприемника, который имеет некоторый процент дефектных пикселей (дефектных элементов (ДЭ)), будет ограничено, т.к. сигналы от ДЭ приемника будут нарушать равномерность гистограммы (элементы расположенные до границы MIN и после границы MAX рис. 1). Что требует значительного усложнения алгоритма анализа гистограммы для нахождения по заданному порогу p настоящих границ MAX и MIN.

Эффективным способом устранения влияния дефектности фотоприемника является применение одномерного медианного фильтра. В этом случае размер маски выбирается не менее чем максимальный размер области гистограммы, соответствующий сигнальным откликам ДЭ (ось X рис. 1). Результат применения медианного фильтра с маской 3x1 показан на рис. 2. Здесь резко выделяющиеся элементы гистограммы, расположенные до границы MIN и после границы MAX, которые имели место на рис. 1, отфильтрованы медианным фильтром. В этом случае значения границ MAX и MIN определяются однозначно по порогу p=5 (рис. 2).

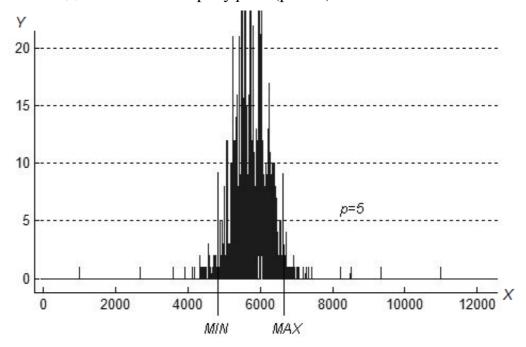


Рис. 2. Гистограмма изображения после фильтрации

ДЭ приемника вносят существенные изменения в структуру гистограммы изображения, что может усложнить реализацию автоматического поиска границ *МАХ* и *MIN*. Следовательно, для визуализации сцены наблюдения, в автоматическом режиме, требуется применение эффективных алгоритмов обнаружения и замещения ДЭ приемника. В противном случае "гистограммный" метод не способен адекватно определить границы *МАХ* и *MIN*

и, следовательно, не способен правильно согласовать динамический диапазон сигнала изображения и устройства, на котором выполняется визуализация. Являясь обязательной процедурой функционирования ТВП, регулярное определение ДЭ (необходимое вследствие дрейфа и нестабильности сигнала элементов приемника), будет сопровождаться временной потерей изображения на экране устройства визуализации до полного прохождения цикла обнаружения ДЭ. Тот факт является неприемлемым для приборов наблюдения и обнаружения.

Примененная методика обработки массива элементов гистограммы позволяет обеспечить надежное функционирование гистограммного метода визуализации вне зависимости от процента дефектных пикселей ФПУ.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Кремис И.И., Однолько Ю.Ф. Унифицированная система обработки сигналов многоэлементного фотоприемного устройства ИК диапазона на основе микросхемы программируемой логики типа FPGA // Прикладная физика, 2007, № 4, С. 133–140.
- 2. Кремис И.И., Однолько Ю.Ф Способы и принципы построения алгоритмов ЦОС многоэлементного фотоприемного устройства ИК-диапазона на основе микросхемы программируемой логики // Прикладная физика, 2008, № 3, С. 101–111.

© И.И. Кремис, В.Н. Федоринин, В.М. Тымкул, 2010

УДК 621.391:519.6.683 *И.В. Касаткин* ФГУП «ЦКБ Точприбор», Новосибирск

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ТЕПЛОВИЗИОННЫХ ИЗОБРАЖЕНИЙ

В статье рассматривается принципиальная возможность компьютерного моделирования тепловизионных изображений с помощью существующего программного обеспечения (Adobe Photoshop, Matlab и т. д.). Описана структура программы компьютерного моделирования изображений (ПКМИ). Приведен пример синтезированного изображения.

I.V. Kasatkin

Federal State Unitary Enterprise «The central design office of precision instruments», Novosibirsk

COMPUTER MODELING OF THERMAL IMAGES

In article the basic opportunity of a computer modeling thermal images by means of the existing software (Adobe Photoshop, Matlab, etc.) is considered. The program structure of a computer modeling of images (PCMI) is described. The example of the synthesized image is resulted.

Расчетное моделирование на сегодняшний день является основным средством, позволяющим разработчикам на этапе проектирования выбрать параметры прибора. Однако результаты расчетного моделирования и реальных испытаний приборов нередко разнятся. Одной из причин является сложность моделирования дешифровочных возможностей оператора.

Таким образом, логичным продолжением развития расчетных моделей является изменение формы представления заключительных результатов с числовых значений основных параметров до модели изображения, синтезируемого разрабатываемым прибором.

Программную реализацию программы компьютерного моделирования изображения (далее – ПКМИ) целесообразно [1] производить имитацией последовательного воздействия на исходное изображение всех функциональных блоков прибора и представление на дисплее выходного (синтезированного) изображения, адекватного по своим характеристикам реальным оптико-электронным изображениям.

В целом ПКМИ сможет предоставлять возможности:

- Оценить выходные характеристики и показатели эффективности;
- Проанализировать влияние на качество изображения параметров и характеристик отдельных блоков прибора;

- Спрогнозировать (путем экспертной оценки дешифрирования выходного изображения) эффективность функционирования прибора в различных условиях;
- Провести обучение (демонстрацию) дешифровщика по наблюдению характерных особенностей изображения разрабатываемого прибора;
- Использовать результаты моделирования для решения обратной задачи
 оценки алгоритма автоматического распознавания (идентификации) целей.

На сегодняшний день перечень используемых и коммерчески распространяемых ПКМИ достаточно ограничен. Среди них можно отметить программные пакеты INFRAMET, JRM Technology и разработку Сибирской Государственной Геодезической Академии «ПИКИМ».

Предметом дальнейшего рассмотрения будет моделирование (синтезирование) тепловизионных изображений, формируемых посредством тепловизионных приборов.

Формирование исходного изображения

Исходное изображение формируется за счет трех основных составляющих:

- Подстилающей поверхности;
- Объектов фона;
- Цели.

В общем виде задача формирования модели изображения объектов весьма трудоемка и включает в себя необходимость корректного учета целого ряда условий: точность учета ракурса объектов, их тепловых контрастов, распределение контрастов по поверхности. Данные условия описаны в [1].

Формирование исходного изображения может проводиться как в автоматическом, так и в ручном режиме. При этом в качестве метода может быть выбран метод аппликации.

Программно формирование исходного изображения может быть произведено с помощью графических редакторов или программных пакетов, поддерживающих работу с многослойными изображениями (Adobe Photoshop, Matlab и др.). При этом, при квантовании сигнала по уровню, приемлемым считается реализация 256 градаций (8бит), а шаг дискретизации по угловым координатам рекомендуется брать в 8 раз меньше размера элементарного поля зрения прибора [1].

Формирование тестового изображения

В некоторых случаях удобным может быть исследование моделируемого прибора не столько по случайному изображению цели на фоне подстилающей поверхности, сколько объединение на одном кадре множества вариантов расположения цели в поле зрения прибора — с разными контрастами, с дальностью расположения цели, с разным ее ориентированием.

Формирование тестового изображения можно проводить методом аппликации, аналогично с методом формирования исходного изображения. Общая структура изображения в этом случае будет подобна графической

таблице, где в каждой ячейке обеспечена уникальная фоноцелевая обстановка. Пример тестового изображения представлен на рис. 1.

Преимуществом тестового изображения перед исходным является возможность использовать его в ПКМИ даже на начальных этапах ее разработки.

Удаление на заданную дальность

Операция удаления на заданную дальность является первым звеном ПКМИ, в котором учитываются параметры моделируемого прибора.

Суть операции заключается в приведении размеров изображения целевых и фоновых объектов в соответствие с линейными размерами поля зрения прибора и дальности до объекта. К примеру, объект с заданным вертикальным размером на заданной дальности будет занимать строго определенную часть поля зрения моделируемого прибора. При уменьшении или увеличении дальности до объекта доля занимаемой его изображением поля зрения прибора будет увеличиваться или уменьшаться соответственно.

Влияние атмосферы

Данное звено ПКМИ позволяет вносить в исходное изображение помехи, вызванные естественными и искусственными внешними источниками. К факторам воздействия могут относиться:

- Поглощение и рассеяние излучения фона и цели атмосферными газами на трассе наблюдения;
- Поглощение и рассеяние излучения пыле-дымовыми образованиями естественного и искусственного происхождения;
- Засветка моделируемого прибора источниками естественного и искусственного происхождения.

Программная реализация звена может быть выполнена на основе:

- Математического попиксельного обсчета существующего исходного изображения;
 - Синтезирования дополнительного слоя для исходного изображения.

На данном этапе разработки ПКМИ синтезирование дополнительного слоя исходного изображения является наиболее приемлемым для учета влияния атмосферы, особенно в части поглощения и рассеяния излучения.

Суть операции заключается в нанесении поверх исходного изображения дополнительного слоя с заданным параметром прозрачности.

Геометрическая обработка изображения в звене «оптика+ФПУ»

На данном этапе моделирования проводится учет разрешающей способности прибора относительно исходного изображения.

Одним из вариантов проведения этой операции является преобразование разрешения исходного изображения в разрешение фотоприемной матрицы моделируемого прибора. В процессе обработки исходное изображение разбивается на определенное количество зон, содержащих М×М элементов

исходного изображения. Внутри каждой зоны производится расчет средней яркости входящих в их состав пикселей исходного изображения.

Учет размытия изображения и его рассеяния внутри объектива можно описать двумя способами:

- Эквивалентным изменением размеров элементов целевых и фоновых объектов;
 - Эквивалентным падением разрешения моделируемого прибора.

Энергетическая обработка изображения в звене «оптика+ФПУ»

Энергетическая обработка изображения производится одновременно с геометрической. Суть обработки заключается в учете взаимного влияния фоточувствительных элементов матрицы друг на друга при воздействии на них энергетических потоков различной мощности.

Таким образом, в данном звене ПКМИ предлагается учитывать следующие параметры моделируемого прибора:

- Динамический диапазон;
- Степень фотоэлектрической связи между фоточувствительными элементами;
 - Характер рассеяния излучения в объективе.

Электронная обработка изображения в звене «формирование сигнала»

В данном модуле производится моделирование воздействия на исходное изображение электрических процессов, протекающих в электронном тракте прибора. К таким процессам могут относиться:

- Предусиление и усиление сигнала с фотоприемной матрицы;
- Формирование электронных надписей и марок на исходном изображении;
 - Регулировки яркости и контрастности изображения;
 - Автоматическое регулирование яркости и усиления;
- Алгоритмы дополнительного улучшения качества изображения, например, улучшение четкости изображения, дополнительное сглаживание или преобразование цветопредставления исходного изображения (введение псевдоцвета для тепловизионных приборов);
 - Электронное увеличение;
 - Формирование телевизионного сигнала.

Влияние видеосмотрового устройства

Дополнительные искажения в моделируемое изображение может вносить, используемое в приборе, видеосмотровое устройство (ВСУ).

Искажения могут быть как геометрическими, так и яркостными и обуславливаются:

- Различием разрешений изображения и ВСУ;
- Наличием или отсутствием возможности управления яркостью и контрастностью изображения;

– Типом ВСУ (жидкокристаллическое, светодиодное или электроннолучевое).

Генераторы шума

Шумовая составляющая результирующего изображения может быть обусловлена следующими компонентами:

- Температурный или фотонный шум фотоприемника;
- Тепловой, модуляционный и генерационно-рекомбиранционный шумы полупроводниковых элементов;
 - Шумы коммутации, квантования и др.

В процессе разработки ПКМИ, и особенно на ее первых этапах, целесообразно введение одного общего модуля нанесения шумовых составляющих на исходное изображение. Как показывает практика [1], основную составляющую шумов можно представить белым гауссовым шумом фотоприемного устройства. Другие источники шума пренебрежимо малы.

Программную реализацию в этом случае, можно проводить графической обработкой исходного изображения. В частности, программный модуль Matlab Image Processing Toolbox [2] содержит функцию imnoise, которая позволяет создавать новое изображение путем добавления шума к исходному изображению. Функция может добавлять шум трех типов:

- Белый гауссов шум;
- Импульсный шум;
- Мультипликативный шум.

Заключение

Использование ПКМИ в ходе разработки оптико-электронных приборов позволит:

- Упростить процедуру выбора основных технических требований к приборам;
- Проводить опробование различных алгоритмов улучшения качества изображений;
- Оценить эффективность функционирования разрабатываемых приборов в различных условиях наблюдения;
- Обучать дешифровщиков по наблюдению характерных особенностей изображения разрабатываемого прибора;
- Отрабатывать алгоритмы автоматического распознавания (идентификации) цели.

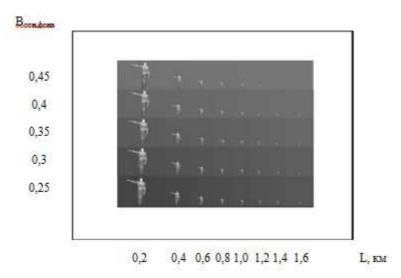


Рис. 1. Синтезированное тестовое изображение РФЧ (фокус объектива – 150 мм, формат ФПУ - 320×240 , размер ФЧЭ – 45 мкм)

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Иванов, В.П., Курт, В.И., Овсянников, В.А., Филиппов, В.Л. Компьютерное имитационное моделирование тепловизионных изображений / В.П. Иванов, В.И. Курт, В.А. Овсянников, В.Л Филиппов // Моделирование и оценка современных тепловизионных приборов. Казань. 2006 г. С. 426-444.
- 2. Рудаков, П.И., Сафонов, В.И. Пакет прикладных программ Image Processing Toolbox / П.И Рудаков, В.И. Сафонов // Обработка сигналов и изображений.

© И.В. Касаткин, 2010

УДК 681.7.014 *Н.Н. Мордвин* ФГУП «ЦКБ Точприбор», Новосибирск

ПОДАВЛЕНИЕ РАБОТЫ ТЕПЛОВИЗИОННЫХ СИСТЕМ ДЛИННОВОЛНОВОГО ДИАПАЗОНА НА ОСНОВЕ НЕОХЛАЖДАЕМОЙ МИКРОБОЛОМЕТРИЧЕСКОЙ МАТРИЦЫ

В статье приведены результаты экспериментов по подавлению работы тепловизионных приборов на основе микроболометрической матрицы. На основе результатов эксперимента прогнозируется возможность подавления работы тепловизионных систем на дистанциях сопоставимых с дальностью их действия.

N.N. Mordvin

Federal State Unitary Enterprise «The central design office of precision instruments», Novosibirsk

THE WORK SUPPRESSION OF INFRARED LONG WAVE SYSTEMS ON A BASIS OF UNCOOLED MICROBOLOMETER DETECTOR

The results of experiments for work suppression of infrared long wave systems on a basis of uncooled microbolometer detector are presented. On a basis of experimental results the possibility a work suppression of infrared long wave systems on distances equal ones working is predicted.

В настоящее время тепловизионные средства диапазона 8-12 мкм получают массовое распространение в военной сфере применения. На базе тепловизионных средств разрабатываются приборы наблюдения и разведки, прицельные системы для стрелкового оружия, бронетанковой техники, авиационной и прочей техники. Задача противодействия подобным системам является актуальной.

Цели проведения экспериментов по подавлению тепловизионных систем (TПС):

- Определение минимальной энергии излучения лазера достаточной для постановки оптической помехи, препятствующей работе ТПС;
- Определение минимальной энергии излучения лазера приводящей к насыщению и временному прекращению работы ТПС;
- Определение минимальной энергии излучения лазера приводящей к необратимой деградации материала элементов ТПС и выхода их из строя.

Схема эксперимента показана на рис. 1.

Для проведения эксперимента использовалось следующее оборудование:

- Излучатель малогабаритного импульсно-периодического волноводного CO₂-лазера с ВЧ возбуждением;
- ВЧ генератор для накачки малогабаритного волноводного CO_2 -лазера с вентилятором;
- Тепловизионный прибор на основе неохлаждаемой микроболометрической матрицы;
 - Видеосмотровое устройство;
 - Комплект пленочных светофильтров.

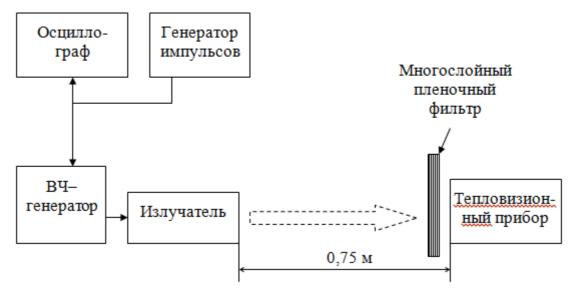


Рис. 1. Схема эксперимента

Технические характеристики излучателя представлены в табл. 1.

Таблица 1

Длина волны, мкм	10,6
Расходимость излучения, мрад	12
Мощность в импульсе, Вт	до 10*
Средняя мощность, Вт	до 1
Частота повторения импульсов, Гц	до 5 000
Допустимая скважность	5
Длительность импульса, мкс	30÷300

^{*}Измерение мощности излучения производилось с помощью ИМО-2Н.

Технические характеристики тепловизионного прибора представлены в табл. 2.

Удельная обнаружительная способность, см*Гц ^{0,5} *Вт ⁻¹	5*10 ⁹
Диаметр объектива, мм	50
Частота кадров, Гц	30
Фокусное расстояние, мм	50

В процессе эксперимента излучение CO_2 —лазера фокусировалось на участке фотоприемной матрицы площадью приблизительно в 300 элементов. При работе системы на реальных дальностях (свыше $200\div300$ м) вся энергия излучения, как правило, попадает на один элемент матрицы, это связано с тем, что на таких дальностях источник лазерного излучения для ТПС является «точечным». Пороговое значение мощности излучения, определяемое в эксперименте, делилось на число облученных пикселей.

Излучение лазера ослаблялось комплектом светофильтров на основе полиэтиленовых. Уменьшением числа слоев пленки постепенно повышалась мощность излучения, воздействующего на матрицу.

Комплект светофильтров предназначен для регулирования коэффициента пропускания оптической системы приемного канала макета и представляет собой набор пленок одинаковой толщины и коэффициента пропускания. Спектр пропускания фильтров из 2, 4 и 6 слоев пленки в спектральном диапазоне 8-14 мкм представлен на рис. 2. Из рис. 2 определяем коэффициент пропускания одной пленки Т≈88%. Таким образом во время исследований, коэффициент пропускания светофильтра менялся по закономерности, указанной на рис. 3.

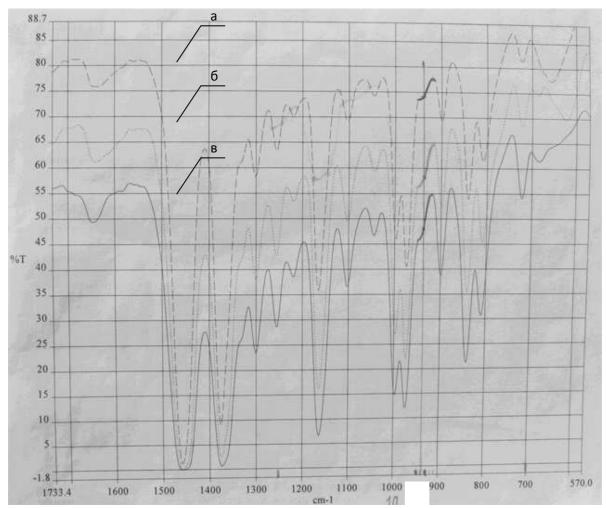


Рис. 2. Спектр пропускания светофильтра из 2(а), 4(б) и 6(в) слоев пленки

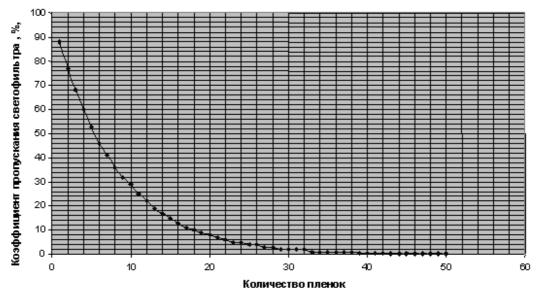


Рис. 3. Зависимость коэффициента пропускания светофильтра на длине волны 10,6 мкм в зависимости от количества пленок

В результате эксперимента было установлено:

- При средней мощности излучения на элементе МФПУ $P_{cp}=2,7\cdot10^{-7}$ Вт происходит насыщение элементов МФПУ, растекание заряда в соседние ячейки (яркое пятно), а также появление хаотичного шума во всей области

фотоприемной матрицы (хаотичное свечение отдельных пикселей), таким образом имеющая место в данном случае оптическая помеха препятствует работе ТПС;

- При пиковой мощности излучения на элементе $P_{\text{пик}} = 0.53 \cdot 10^{-5}$ Вт происходит насыщение и временная деактивация элементов (черные пиксели на фоне), при этом эффект проявляется сразу при достижении пороговой энергии и практически не зависит от времени воздействия излучения. При срабатывании «шторки» системы коррекции и компенсации неоднородности, входящей в состав фотоприемного модуля, отключившиеся элементы восстанавливаются;
- При пиковой мощности излучения на элементе $P_{\text{пик}} = 1,6 \cdot 10^{-5}$ Вт и воздействии продолжительностью более 3 секунд наблюдаются необратимые повреждения выражающиеся в виде возникновения «белых» «выгоревших» пикселей (рис. 4). Кратковременное же воздействие излучения вызывает уже знакомую дезактивацию элементов при проведении лазерного луча по диагонали матрицы остается характерная черная линия. При этом срабатывание системы коррекции и компенсации неоднородности не устраняет ни первый, ни второй вид повреждений выгоревшие «белые» пиксели не исчезают, а черная полоса проявляется через 10 с, вследствие этого происходит повторное срабатывание шторки через 30 с. Эффект «черной полосы» исчез по истечению суток, а система коррекции и компенсации неоднородности восстановила свой обычный режим работы, при этом выгоревшие элементы (2 элемента) не восстановились.

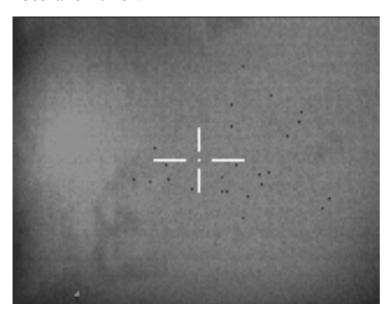


Рис. 4. Изображение поля зрения с «выгоревшими» пикселями после воздействия лазерного излучения

Определенные в процессе экспериментов пороговые значения мощностей воздействующего излучения позволили построить пороговых зависимости излучения мощностей ДЛЯ постановки помех, дезактивации выведения элементов фотоприемной матрицы из строя от дальности.

Расчет проводился для ТПС с диаметром объектива 90 мм с учетом пропускания атмосферы при МДВ 5 км.

На рис. 5 показана зависимость пороговой мощности излучения для постановки оптической помехи

при средней мощности излучения лазера до 10 Вт и расходимостью луча 2,5°.

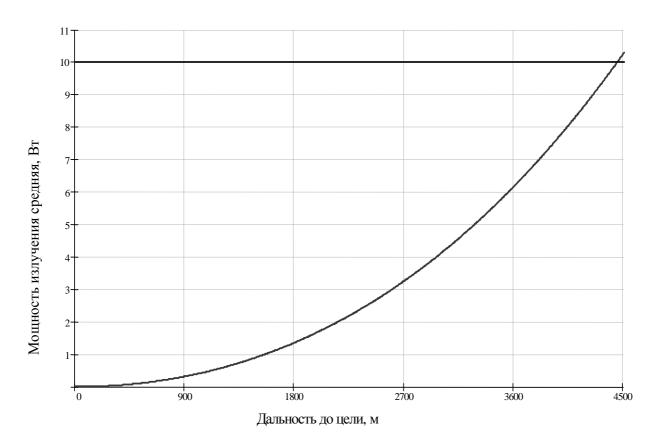


Рис. 5. Зависимость пороговой мощности излучения для постановки оптической помехи. Средняя мощность излучения до 10 Вт, расходимость 2.5°

На рис. 6 показана зависимость пороговой мощности излучения «выжигания» и дезактивации элементов фотоприемной матрицы от дальности при импульсной мощности излучения лазера до 10 Вт.

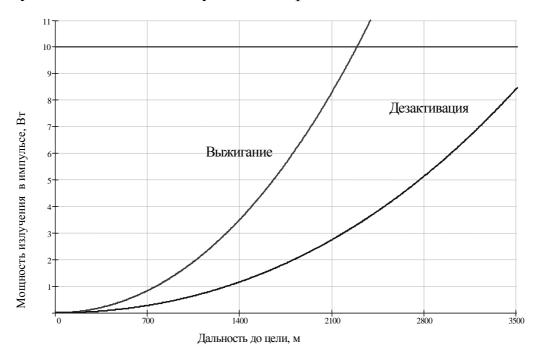


Рисунок 6 — Зависимость пороговой мощности излучения для выжигания и дезактивации элементов фотоприемной матрицы от дальности. Импульсная мощность излучения до 10 Вт.

Заключение

Расчетные зависимости демонстрируют достаточную эффективность, как постановки оптической помехи, так и выжигания ТПС на дальностях свыше 2 км в макетном образце и свыше 6 км в перспективе.

При подавлении ТПС противника, атакующая сторона может получить решающее преимущество. Подобные системы будут востребованы во всех родах войск, т.к. тепловизионные системы разведки, наблюдения и прицеливания находят все большее и большее применение.

© Н.Н. Мордвин, 2010

ДВУХСПЕКТРАЛЬНЫЙ ОБЪЕКТИВ С ДВУМЯ ЗЕРКАЛАМИ МАНЖЕНА

Предлагаются результаты расчета двухспектрального объектива с двумя зеркалами Манжена. Для данного объектива приводятся принципиальная коэффициентов аберраций оптическая схема. изменение Зейделя компонентам для разных спектральных диапазонов и распределение энергии в аберрационном пятне.

M.P. Yegorenko, V.S. Yefremov SSGA, Novosibirsk

TWO-SPECTRAL OBJECTIVE WITH TWO MANGIN MIRRORS

The calculations for the two-spectral objective with two Mangin mirrors are offered. The principal optic scheme for the given objective is presented. The changes in Seidel aberrations coefficient for the components of different spectral ranges and the energy distribution in aberration spot are shown.

В работах [1,2] были рассмотрены оптическая схема и коррекционные свойства зеркально-линзового объектива, состоящего из положительной линзы

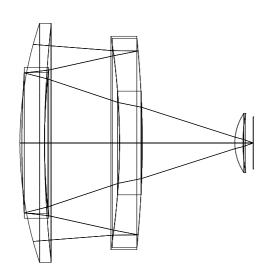


Рис. 1. Оптическая схема объектива с двумя зеркалами Манжена

Манжена, приведенные на рис. 1.

в параллельном пучке лучей, зеркала Манжена. полевого компенсатора, выполненных из одного оптического работающего материала, В двух спектральных диапазонах.

комбинация Такая оптических элементов, реализует известный частичной принцип взаимной компенсации хроматических аберраций. Однако эта компенсация не полная и не превышает трети хроматизма вносимого линзой.

Ввиду отсутствия оптических материалов прозрачных в нескольких пригодных диапазонах спектра ДЛЯ ахроматических создания пар, представляют интерес оптические схемы объективов с двумя зеркалами Используем в качестве материала преломляющих оптических элементов фтористый кальций, прозрачный для оптического излучения в диапазонах спектра $\Delta\lambda$ =0,5-0,9мкм и $\Delta\lambda$ =3-5мкм.

Для анализа коррекционных возможностей двухспектрального объектива с двумя зеркалами Манжена воспользуемся коэффициентами аберраций Зейделя (суммами Зейделя), определяющими хроматизм положения (S_{Ixp}) и хроматизм увеличения (S_{IIxp}), которые приведены в табл. 1.

Таблица 1. Значения сумм Зейделя объектива с двумя зеркалами Манжена

	Δλ мкм				
Мо порору пости	0,5-0,9 мкм	0,5-0,9 мкм	3-5 мкм	3-5 мкм	
№ поверхности	Хроматизм положения (S_{Ixp}), хроматизм увеличения (S_{IIxp})				
	S_{Ixp}	S_{IIxp}	S_{Ixp}	S_{IIxp}	
1	-0,093574	-0,009459	-0,241551	-0,024632	
2	0,005245	0,029798	0,016603	0,076284	
1-2	-0,088329	0,020339	-0,224948	0,051652	
3	0,068991	-0,040592	0,176269	-0,104389	
4	0,000000	0,000000	0,000000	0,000000	
5	-0,026213	0,033707	-0,066601	0,086830	
3-5	0,042778	-0,006885	0,109668	-0,017559	
6	0,080423	-0,030919	0,208449	-0,079815	
7	0,000000	-0,000000	0,000000	0,000000	
8	-0,049831	0,027886	-0,129382	0,071917	
6-8	0,030592	-0,003033	0,079067	-0,007898	
9	0,051429	-0,013836	0,134004	-0,035690	
10	-0,041012	0,012990	-0,106763	0,033429	
9-10	0,010417	-0,000846	0,027241	-0,002261	
11	0,003970	-0,011973	-0,010365	-0,031151	
12	-0,003991	0,001411	-0,010419	0,003887	
11-12	-0,000021	-0,010562	-0,020784	-0,027264	
Плоскость изображений	-0,004562	-0,000987	-0,009027	-0,003330	

Таблица 2. Значения сумм Зейделя линзовых компонентов объектива

	Δλ ΜΚΜ				
№ поверхности	0,5-0,9 мкм	0,5-0,9 мкм	3-5 мкм	3-5 мкм	
л⊻ поверхности	Хроматизм положения (S_{Ixp}), хроматизм увеличения (S_{IIxp})				
	S_{Ixp}	S_{IIxp}	S_{Ixp}	S_{IIxp}	
1-2	-0,088329	0,020339	-0,224948	0,051652	
9-10	0,010417	-0,000846	0,027241	-0,002261	
11-12	-0,000021	-0,010562	-0,020784	-0,027264	
1-2+9-10+11-12	-0,077933	0,008931	-0,218491	0,022127	

Таблица 3. Значения сумм Зейделя двух зеркал Манжена объектива

	Δλ ΜΚΜ				
No Hopopy Hooth	0,5-0,9 мкм	0,5-0,9 мкм	3-5 мкм	3-5 мкм	
№ поверхности	Хроматизм положения (S_{Ixp}), хроматизм увеличения (S_{IIxp})				
	S_{Ixp}	S_{IIxp}	S_{Ixp}	S_{IIxp}	
3-5	0,042778	-0,006859	0,109668	-0,017559	
6-8	0,030592	-0,003033	0,079067	-0,007898	
3-5+6-8	0,07337	-0,009892	0,188735	-0,025457	

Таблица 4. Отношение значений сумм Зейделя зеркальных к линзовым компонентам объектива

$S_{Ixp 3}/S_{Ixp л}$	0,94	-	0,86	-
$S_{IIxp 3}/S_{IIxp \pi}$	-	1,1	-	1,15

Из табл. 4 видно, что применение двух зеркал Манжена в данной схеме производит практически полную взаимную компенсацию хроматических аберраций. Значения отношений сумм Зейделя зеркальных к линзовым компонентам объектива близки к единице. Причем хроматизм недоисправлен, хроматизм увеличения переисправлен положения a одновременно в обоих диапазонах спектра. Поскольку реальные значения аберраций пропорциональны коэффициентам аберраций Зейделя, то объективе должны выполняться те же закономерности.

Коррекция аберраций и оценка качества изображения проводилась в диапазонах спектра: визуальном и ближнем ИК - 0,486-0,9мкм и тепловизионном - 3-5 мкм. Объектив имеет фокусное расстояние 200 мм, относительное отверстие 1:1,5 и поле зрения 10 градусов.

На рис. 2-4 приведены результаты расчета двухспектрального объектива с двумя зеркалами Манжена для диапазонов спектра $\Delta\lambda$ =0,5-0,9мкм и $\Delta\lambda$ =3-5мкм.

Концентрация энергии в аберрационном кружке для $\Delta\lambda$ =0,5-0,9мкм и $\Delta\lambda$ =3-5мкм приведены на рис. 3 и 4.

Результаты расчётов показывают принципиальную возможность разработки двух спектральных объективов из одного материала для диапазонов спектра $\Delta\lambda$ =0,5-0,9мкм и $\Delta\lambda$ =3-5мкм. Размер аберрационного кружка увеличивается от длины волны излучения, однако в каждом из диапазонов не превышает 50 мкм и при дальнейшей оптимизации может быть уменьшен.

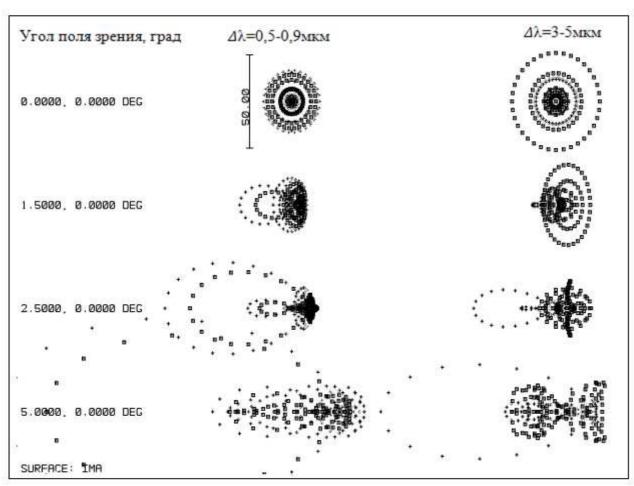


Рис. 2. Точечная диаграмма аберрационного кружка по длинам волн:

$$\Delta\lambda$$
=0,5-0,9мкм: + - 0.486мкм; × - 0.546мкм; \Box - 0.9мкм; $\Delta\lambda$ =3-5мкм: + - 3.0мкм; × - 4.0мкм; \Box - 5.0мкм.

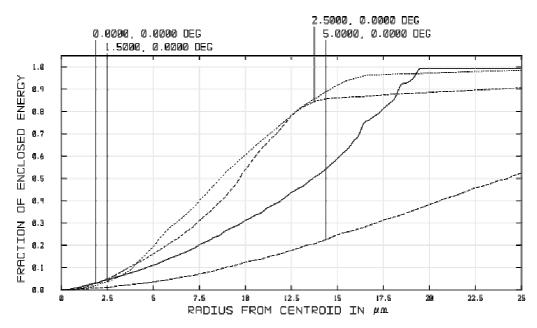


Рис. 3. Концентрация энергии в аберрационном кружке для $\Delta\lambda$ =0,5-0,9мкм

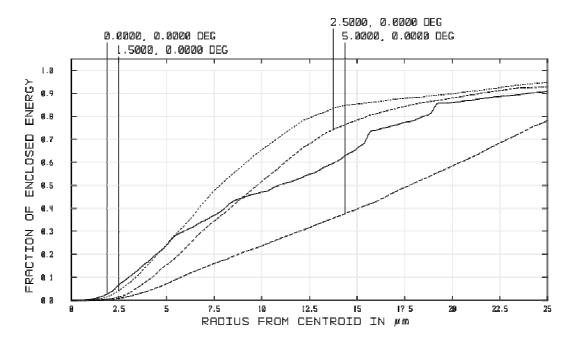


Рис. 4. Концентрация энергии в аберрационном кружке для $\Delta\lambda$ =3-5мкм БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. К вопросу компенсации хроматизма зеркал Манжена в нескольких диапазонах спектра [Текст] / М.П. Егоренко // ГЕО-Сибирь-2008. Т.4. Специализированное приборостроение, метрология, теплофизика, микротехника: сб. материалов междунар. науч. конгр. «ГЕО-Сибирь-2008», 22 24 апр. 2008 г., Новосибирск. Новосибирск: СГГА, 2008. С. 102-105.
- 2. Егоренко, М.П. Хроматические свойства зеркала Манжена в нескольких диапазонах спектра [Текст] / М.П. Егоренко, В.С. Ефремов // Приборостроение. 2009. N = 6. C.53 58.

© М.П. Егоренко, В.С. Ефремов, 2010

УДК 681.17.18

И.Г. Пальчикова, Е.С. Смирнов

КТИ НП СО РАН, Новосибирск

Н.П. Боев

НГУ, Новосибирск

Л.В. Омельянчук

ИХБФМ СО РАН, Новосибирск

Б.М. Аюпов

ИНХ им. А.В. Николаева СО РАН, Новосибирск

Н.В. Каманина

ФГУП «НПК "ГОИ им. С.И. Вавилова"», Санкт-Петербург

ИЗУЧЕНИЕ ХАРАКТЕРИСТИК СОВРЕМЕННЫХ ПОЛЯРИЗАЦИОННЫХ ПЛЕНОК ДЛЯ ЦЕЛЕЙ МИКРОСКОПИИ

Приводятся результаты экспериментального определения зависимости остаточного пропускания поляризационных светофильтров от угла падения поляризованного света.

I.G. Palchikova, Ye.S. Smirnov

Design and Technology Institute of Scientific Instrument-engineering, Siberian Branch of the Russian Academy of Sciences

N.P. Boyev

Novosibirsk State University

L.V. Omelyanchuk

The Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences

B.M. Ayupov

A.V. Nikolayev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences

N.V. Kamanina

Federal State unitary enterprise "Scientific-and-production enterprise "Vavilov State Optical Institute", St. Petersburg

EXPLORING THE CHARACTERISTICS OF MODERN POLARIZING FILMS FOR MICROSCOPY

Experimental results of studying the residual transmittance for polarizing filters depending on the polarizing light incidence angle are presented.

ВВЕДЕНИЕ

В настоящее время активно развиваются новые микроскопические методики, такие как дифференциально-интерференционный контраст (ДИК),

PlasDIC и ДИК круговой поляризацией, люминесценция, (флюоресцентная микроскопия внутренним cполным отражением). Современная микроскопия позволяет получать не только высококачественные изображения, но и производить количественные обсчеты изображений образцов с высокой точностью. В поляризационных микроскопических методиках биологический образец помещается между стеклами и наблюдение ведется в скрещенных поляроидах, причем анализатор помещается после микрообъектива (в ходе лучей от источника). Однако хорошо известно [1], что на каждой границе раздела стекло – воздух или стекло – иммерсия происходит деполяризация света. Показано [2], что в фокальной области даже одиночной поляризационная структура падающего излучения претерпевает изменения. То есть в стандартных поляризационных методиках наблюдения имеется систематическая ошибка, возникающая вследствие деполяризации рассеянного образцом света на оптических компонентах микроскопа. Если микроскопическое изображение наблюдается визуально, то эта ошибка не оказывает существенного влияния на результирующую интерпретацию данных, незначительно снижает контраст изображения. Вместе биологических экспериментах [3] требуются высокоточные количественные обсчеты микроизображений, зарегистрированных в цифровом виде. И в этом случае обсуждаемая ошибка может существенно исказить результаты и ее необходимо исключать. Один из способов уменьшения этой изменении расположения поляризующих элементов микроскопе. Модернизация оптической схемы возможна лишь с применением современных поляризаторов.

Целью настоящей работы является экспериментальное изучение характеристик пленочных поляризационных светофильтров (поляроидов) и анализ возможностей применения их в поляризационных методиках микроскопии.

ОСОБЕННОСТИ ПОЛЯРИЗАЦИОННЫХ ПЛЕНОК

Использующиеся в микроскопии поляризационные призмы, например, Николя из исландского шпата, в ряде случаем заменяются поляроидами, которые практически не уступают по степени поляризации кристаллам. поляроидов элементом является поляризационная получаемая путем йодирования и растягивания поливиниловой пластмассы. Сильный дихроизм такой пленки обусловлен одинаковой ориентацией молекул I_2 среди вытянутых в одном направлении цепочек молекул пластмассы. $\Phi \Gamma Y \Pi$ «НПК «ГОИ им. С.И.Вавилова» разработал и использует для изготовления малых партий образцов технологию получения высокоэффективных пленочных поляризаторов, обладающих высоким пропусканием в видимой области спектра и достаточно близкими значениями коэффициентов пропускания в диапазоне 400 – 800 нм при высокой степени поляризации (Р>99%) и однородности положения плоскости поляризации по сечению пленки.

Поляроиды позволяют получить поляризованный световой пучок большого диаметра. Толщина поляроидов по сравнению с поляризационными призмами мала и они практически не изменяют хода лучей в оптической системе,

пропускание таких фильтров не изменяется в широком диапазоне длин волн, что облегчает конструирование поляризационных приборов. Поляроиды широко применяются в жидкокристаллических устройствах отображения информации (мониторах), микроэлектронике, поляризационных измерительных методиках и приборах, таких как фотокамеры, специализированные микроскопы и телескопы и т.д.

К основным характерным параметрам поляроидов относятся следующие: 1. Пропускание, которое характеризуется коэффициентом пропускания τ , а именно отношением интенсивностей пучка света до и после его прохождения через фильтр. Различают интегральный и спектральный коэффициенты пропускания. Категории по пропусканию поляроидов устанавливаются для двух поляроидов В параллельном положении поляризации и для остаточного пропускания поляроидов в скрещенном положении (главные коэффициенты пропускания τ_{max} и τ_{min}). 2. Главные оптические плотности (логарифм величины, обратной коэффициенту пропускания). 3. Степень поляризации излучения – отношение разности квадратов большой и малой полуосей эллипса, описываемого вектором напряженности электрического поля к их сумме. 4. Дихроичное отношение (отношение оптических плотностей). 5. Поляризационный дефект – отношение $\tau_{\min}/(\tau_{\min}+\tau_{\max})$.

Перечисленные характеристики не описывают и не дают никакого представления об изменении поляризационных свойств фильтров в зависимости от угла падения света. А именно эта зависимость является основной и существенной при рассмотрении действия поляроидов в микроскопах с высокоапертурными микрообъективами. Не менее важна так же степень однородности коэффициента пропускания по поверхности поляроида.

ЭКСПЕРИМЕНТАЛЬНОЕ ИЗУЧЕНИЕ ХАРАКТЕРИСТИК ПОЛЯРОИДОВ

Следующие образцы поляризационных фильтров выбраны для экспериментов: образец 1 — стандартный поляроид микроскопа Carl Zeiss диаметром 15 мм, толщиной 1,5 мм; образец 2 — поляризационная пленка (ГОИ) размером 25x25 мм, толщиной 80 мкм; образец 3 — стандартное покровное стекло покрытое поляризационной пленкой ГОИ; образец 4 — призма Николя из металлографического микроскопа в оправе — 11x11x33 мм.

Экспериментально определялись однородность коэффициента пропускания по поверхности и зависимость поляризационных характеристик образцов от угла падения света.

Однородность коэффициента пропускания по поверхности образца проверялась на монохроматическом лазерном нулевом эллипсометре ЛЭФ-3М, а именно измерялись вариации остаточного пропускания на выбранной площадке поверхности образца. Принципиальная схема измерений представлена на рис. 1.

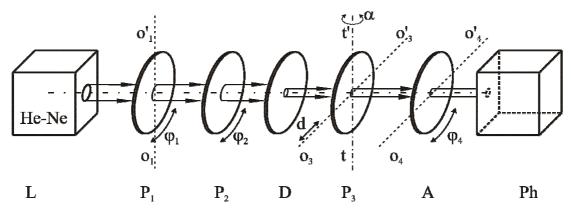


Рис. 1. Принципиальная оптическая схема измерений однородности τ

Экспериментальная установка (рисунок 1) состоит из: источника света L, включающего в себя лазер ЛГН-208Б ($\lambda = 6328 \text{ Å}$) и механический модулятор с оптопарой, поляризатора P_1 , компенсатора P_2 , диафрагмы D, образца P_3 , приёмника света (ФЭУ) Ph. Плечи анализатора И эллипсометра устанавливаются «на просвет», исследуемые образцы вначале юстируются перпендикулярно пучку света диаметром 1 мм путем вращения вокруг оси tt'(рис. 1). Поляризатор, компенсатор и анализатор могут плавно вращаться относительно оптической оси на произвольный угол ф, их азимутальные шкалы устанавливаются с погрешностью ± 0°01′. Введение в схему модулятора с оптопарой позволяет усиливать сигнал от фотоумножителя на частоте вращения модулятора и устранять таким образом шумы. Образец Р₃ закрепляется в специальной оправе на столике эллипсометра. Поляризационные оси образцов не контролируются. Оправа с образцом может перемещаться с помощью микрометрического винта поперек оптической оси (направление d на рис. 1). В экспериментах поляризатор P_1 с компенсатором P_2 обеспечивают круговую поляризацию излучения, падающего на образец. Вращая азимутальную шкалу анализатора А, находим угол гашения (минимум интенсивности света на фотоприемнике). Измеряем остаточное пропускание образца в выбранной области диаметром 1 мм, затем перемещаем образец с шагом 2 мм и повторяем измерение. Разброс углов гашения анализатора характеризует однородность поляризационных свойств образца. Чем разброс меньше. качественный образец.

На рис. 2 приведены графики зависимости изменения угла гашения анализатора от координаты точки падения пучка на образец, полученные экспериментально. Графики на рис. 2 а) построены для случая, когда плоскость образца перпендикулярна оптической оси, на рис. 2 δ) — плоскость образца повернута относительно оптической оси на угол 45°. Полученные данные позволяет сравнить разработанные нами образцы с призмой Николя. Однородность поляризационных характеристик пленок и поляризационных покровных стекол, разработанных ГОИ, практически такая же, как и у призмы Николя.

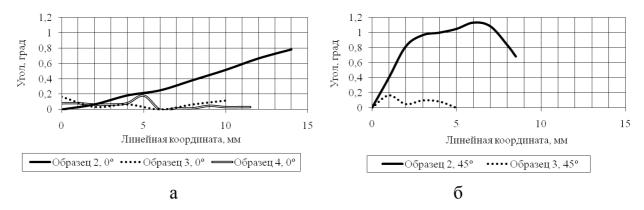


Рис. 2. График зависимости изменения угла гашения анализатора от координаты точки падения пучка на образец: a) — плоскость образца перпендикулярна оптической оси; δ) — плоскость образца повернута относительно оптической оси на угол 45°

Принципиальная оптическая схема экспериментов ПО изучению зависимости главных коэффициентов пропускания образцов от угла падения света дана на рис. 3. Свет гелий-неонового лазера проходит через четверть волновую фазовую пластинку P_1 и приобретает круговую поляризацию. Поляроид Р2 закреплен в лимбе и может вращаться вокруг главной оптической оси. Поляризационная ось O_2 - O_2 ' выставляется вертикально. Диафрагма D ограничивает диаметр пучка, падающего на образец Р₃. Образец Р₃ закреплен в оправе на лимбе, который позволяет вращать образец вокруг главной оптической оси на угол \pm 90°. Лимб в свою очередь крепится на оптическом столике, позволяющем поворачивать его вокруг оси tt' на заданный угол α с погрешностью $0,1^{\circ}$. Ось вращения tt' пересекается с главной оптической осью системы. Фотоприемник R выполнен на основе фотодиода с линейным усилителем. Все компоненты расположены строго перпендикулярно главной оптической оси.

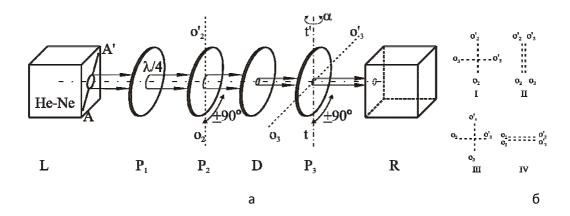


Рис. 3. *а*) Принципиальная оптическая схема экспериментов по изучению зависимости главных коэффициентов пропускания образцов от угла падения света. δ) Обозначение взаимного расположения поляризационных осей поляроида P_2 и образца P_3 в экспериментах

Графики зависимости главных коэффициентов пропускания образцов от угла падения света сведены в табл. 1. Полученные экспериментальные данные выявили, что поляризационные покровные стекла, разработанные ГОИ (2-ая и 3-я строки табл. 1), демонстрируют существенно меньшую зависимость главных коэффициентов пропускания от угла падения света. Даже если угол падения не превышает 30° (что в микроскопе соответствует апертурам микрообъектива равным примерно 0,75), то изменения коэффициентов пропускания достигают 10% для всех образцов. Более существенные различия в кривых появляются при больших углах падения.

Без покровных стекол С покровными стеклами au_{\min} $\tau_{\rm max}$ au_{\min} Образец 1 бразец 1 Мгол::: IV **У**гол... III Образец 2 Образец 2 Образец 2 1.5 2000 Мгол::: IV Образец 3 Образец ····· **У**гол... Ш Угол поворота, град

Таблица 1. Графики зависимости пропускания образцов от угла падения света

Микроскопические изображения в поляризованном свете

Для исключения деполяризации, вносимой микрообъективом, и улучшения качества изображения в поляризационном микроскопе мы предлагаем использовать поляризационные пленки в качестве покровных стекол. Таким образом, покровное стекло в микроскопе будет использоваться в качестве анализатора.

Экспериментальные испытания новой схемы проводились на микроскопе Dialux 20E.B., оснащенном цифровой фотокамерой Nikon EOS 500D с повышенной дигитализацией (digitalization) — 14 bit. В качестве покровных стекол применялись образцы 3. Исследовалось изменение контраста в изображении резкого края тестового объекта — чёрно-белого

жидкокристаллического экрана, имеющего резкий край по своему периметру, который и наблюдался в поляризованном свете. На рис. 4 представлены фотографии тестового объекта, а данные их обработки — на рис. 5. В экспериментах использовались два микрообъектива: 10^{\times} и 20^{\times} П ЛОМО. Графики на рис. 5 строились в среде программирования МАТНСАD путем выборки значений уровней серого вдоль однопиксельной прямой, перпендикулярной изображению резкого края границы.

Рис. 1. Фотография экрана в белом (а) и поляризованном (б, в) свете

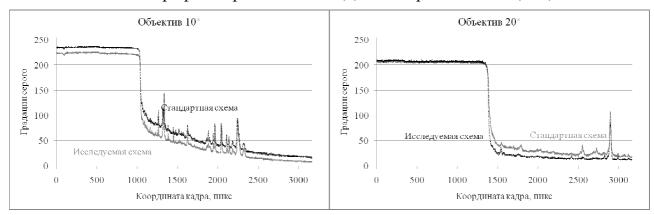


Рис. 2. График изменения градаций уровня серого вдоль однопиксельной прямой, перпендикулярной к изображению резкого края

ЗАКЛЮЧЕНИЕ

Экспериментальные испытания новой поляризационной методики подтвердили эффективность использования поляризационных покровных стекол. Новая схема расположения поляроидов по сравнению со стандартной, дает увеличение контраста изображения на 5.8% для объектива 10^\times и на 4.4% для объектива 20^\times .

Работа выполнялась в рамках проекта РФФИ №09-08-00651.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Борн М., Вольф Э. Основы оптики. М.: Наука, 1973. 719 с.
- 2. Соколов А.Л. Поляризационная структура излучения в фокальной области линзы // Оптика и спектроскопия / − 2009/ − том 107 №2. − с.219-224.
- 3. Anthony Squire, Peter J. Verveer et. al. Red-edge anisotropy microscopy enables dynamic imaging of homo-FRET between green fluorescent proteins in cells// Journal of Structural Biology. 2004. V. 147. P. 62–69.

© И.Г. Пальчикова, Е.С. Смирнов, Н.П. Боев, Л.В. Омельянчук, Б.М. Аюпов, Н.В. Каманина, 2010

УДК 681.7.015.2 В.М. Тымкул, Л.В. Тымкул, Ю.А. Фесько СГГА, Новосибирск

ТЕПЛОВИЗИОННЫЙ МЕТОД ИЗМЕРЕНИЯ ЛИНЕЙНЫХ РАЗМЕРОВ ТРЕХМЕРНЫХ ОБЪЕКТОВ

В статье рассмотрен тепловизионный метод дистанционного измерения линейных размеров трехмерных объектов на основе поляризационного тепловидения, а также приведен анализ информативности экспериментальных поляризационных термограмм.

V.M. Tymkul, L.V. Tymkul, Y.A. Fesko Siberian State Academy of Geodesy (SSGA) 10 Plakhotnogo Ul., Novosibirsk, 630108, Russian Federation

THERMOVISION METHOD OF MEASURING LINEAR DIMENSIONS OF THREE-DIMENSIONAL OBJECTS

In article is considered a thermovision method of remote measurement of linear dimensions of three-dimensional objects on the basis of the polarization thermovision, and give the analysis of informative of experimental polarization thermograms.

Оптико-физический анализ интерпретация И классических тепловизионных изображений объектов показывает, что их яркость зависит от индикатрисы коэффициента излучения элементов поверхности объекта, температуры этих элементов и формы самой излучающей поверхности. В этой связи, в работе [1] сформулирован вывод о неоднозначности решения задачи по определению формы выпуклых объектов внутри их контура на основе классических тепловизионных изображений. В работах [2-5] рассмотрен ряд способов распознавания формы объектов внутри их контура, защищены одним авторским свидетельством и тремя патентами РФ на изобретения. Эти способы основаны на получении, анализе и обработке экспериментальных поляризационных термограмм с базисными азимутами поляризации. Это дает основание полагать, что эти материалы, могут быть интерпретации объемной формы использованы ДЛЯ объектов искусственного, так И естественно-природного происхождения. Метод бесконтактного измерения трехмерных объектов может быть использован в измерительной технике для измерения размеров и визуализации профиля измеряемой поверхности трехмерных объектов.

Метод заключается в записи и обработке регистрируемого поляризационного теплового изображения поверхности исследуемого объекта

по схеме, которая изображена на рис. 1. В оптическую схему 3 перед матричным приемником излучения (МПИ) 4 устройства, регистрирующего тепловое излучение объекта, устанавливается ИК-поляризатор 2. ИК-поляризатор снабжен приводом [6], позволяющим ему вращаться вокруг оптической оси, за счет чего тепловому излучению измеряемого объекта придается необходимый азимут поляризации. В предлагаемом методе две из трех декартовых координат определяются размерами изображения (МПИ), третья вычисляется по полученной зависимости между яркостью элемента поляризационного изображения и ориентацией соответствующего элемента на поверхности измеряемого объекта.

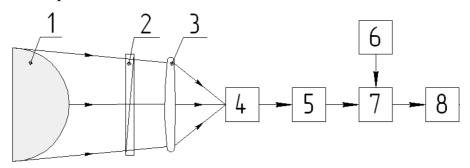


Рис. 1. Функциональная схема получения и обработки поляризационных термограмм

Полученная информация об объекте 1 программным обеспечением 6 обрабатывается в блоке обработки информации 5 и сохраняется в памяти 7, откуда может быть передана на устройство вывода или индикации 8.

Для подтверждения наличия информации об объемности формы внутри контура объектов в поляризационных термограммах на рис. 2 и 3, в качестве примера, представлены термограммы сферы и диска, полученные нами в поляризованном свете при азимутах поляризации t_n =0° и t_n =90°.

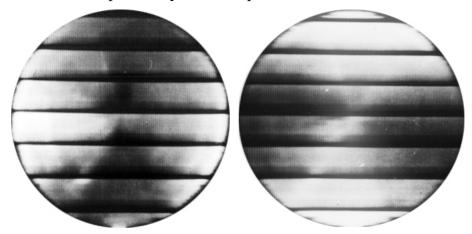


Рис. 2. Поляризационные термограммы сферы с азимутами поляризации t_n =0° и t_n =90°

При проведении анализа полученных тепловых поляризационных изображений объектов различной формы можно отметить следующее:

- 1) При $t_n=0^\circ$ яркость изображения элементов сферы вдоль горизонтальной линии сканирования от центра к краю растет, что объясняется ростом угла ψ ориентации нормали к элементам поверхности сферы по отношению к направлению наблюдения.
- 2) При $t_n=0^\circ$ яркость изображения элементов конуса вдоль горизонтальной линии сканирования от центра к краю постоянна, что объясняется одинаковым

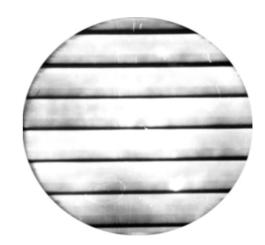


Рис. 3. Поляризационная термограмма плоского диска

значением угла ψ ориентации нормали к элементам поверхности сферы по отношению к направлению наблюдения.

- 3) При t_n =0° или при t_n равному любому значению угла в диапазоне от 0° до 360°, яркость изображения плоского диска практически постоянна по всей его поверхности, что объясняется тем, что для всех элементов поверхности диска угол ψ =0°.
- 4) При t_{π} =90° как для сферы, так и для конуса картина изменения яркости их изображения поворачивается на угол 90°.

На основании результатов проведенного анализа поляризационных термограмм по функциональной зависимости их сигналов от угла ψ ориентации нормали к элементам поверхности объектов по отношению к направлению наблюдению, приведенные в работах [2-5], основные положения метода измерения линейных размеров трехмерных объектов следующие:

Путем ввода в оптическую схему тепловизора линейного ИК поляризатора, который выполнен с возможностью вращения вокруг оптической оси [6], реализуются поляризационные термограммы объектов при азимутах поляризации $tn = 45^{\circ}$ и $tn = 90^{\circ}$.

Для всех элементов разложения кадра, который содержит L строк и N элементов в каждой строке, величины видеосигналов запоминаются и по ним определяется степень поляризации P(N,L) изображения объекта по формуле[5]:

$$P(N,L) = \sqrt{\frac{[U_{45}(N,L)-1]}{2\sin\left\{arctg\frac{[U_{45}(N,L)-1]}{[1-U_{90}(N,L)]}\right\} - [U_{45}(N,L)-1]}}, \quad (1)$$

где $U_{45}(N,L)$, $U_{90}(N,L)$ - величина видеосигналов элементов изображения объекта при азимутах поляризации t_n =45° и t_n =90°.

На основании работ [1,2] принимается во внимание тот факт, что угол $\psi(N,L)$ связан со степенью поляризации P(N,L) по формуле:

$$P(N,L)=a[1-\cos\psi(N,L)], \qquad (2)$$

где а – постоянная, которая зависит от материала поверхности объекта.

На основании соотношений (1) и (2) формируется следующее выражение для определения угла $\psi(N,L)$:

$$\psi(N,L) = \arccos \left\{ 1 - \left(\frac{\left[U_{45}(N,L) - 1 \right]}{2 \sin \left[\arctan \left(\frac{U_{45}(N,L) - 1}{1 - U_{90}(N,L)} \right] - \left[U_{45}(N,L) - 1 \right]} \right/ a \right\}. \quad (3)$$

При анализе поляризационных термограмм (см. рисунки 2-3) две из трех исследуемых координат поверхности объекта (в данном случае координаты х(N,L) и у(N,L)) при сканировании строки (координата х) и вдоль кадра (координата у) определяются по размерам термограммы.

Практически при обработке поляризационных термограмм, координата z(N,L) для всех элементов поверхности объекта определяются по формулам:

$$z(N)\big|_{y=const} = z(N-1) + \Delta x(N) \times tg\psi_{XZ}(N), \quad (4)$$

$$z(L)\big|_{x=const} = z(L-1) + \Delta y(L) \times tg\psi_{YZ}(L), \quad (5)$$

$$z(L)|_{x=\text{const}} = z(L-1) + \Delta y(L) \times tg\psi_{yz}(L),$$
 (5)

где $\Delta x(N)$; $\Delta y(N)$ - шаг сканирования в системе координат пространства изображений при сканировании, соответственно, вдоль координат ОХ и ОҮ; ψ_{XZ} , ψ_{VZ} - проекции угла ψ на координатные плоскости XOZ и YOZ.

Полученные значения 3-х координат всех N×L элементов изображения поверхности объектов можно использовать для формирования объемной картины его поверхности в изометрической проекции с использованием пакета MATLAB.

На рис. 4 приведены результаты экспериментальных исследований по получению линейных размеров и формированию реальной формы сферы вдоль горизонтальной линии сканирования, которые получены с использованием предложенной выше методики.

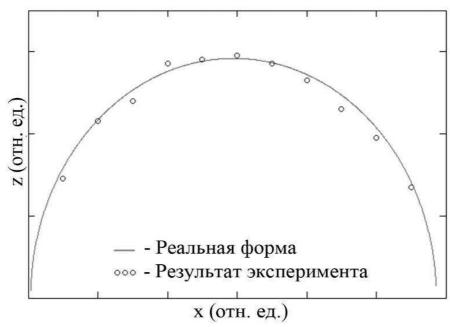


Рис. 4. Формирование формы сферы вдоль горизонтальной линии сканирования БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Тымкул, О.В. Методика определения объемной формы объектов на основе поляризационной комбинированной термограммы / О.В. Тымкул, В.М. Тымкул, О.К. Ушаков // Оптический журнал. 1999. Т.66, №2.- С.54 59.
- 2. А.С. №166727 СССР, МКИ Н04N 5/33. Способ тепловизионного распознавания формы объектов / В.М. Тымкул, Л.В. Тымкул, М.И. Ананич, П.Г. Голубев, С.Г. Смагин /СССР/. №4738971/09; заяв. 06.06.89; опубл. 30. 07.91, Бюл. №28.
- 3. Пат. 2024212 РФ, МКИ Н04N 5/33. Способ распознавания формы объектов / А.Б. Гринев, Т.Б. Куроптева, В.М. Тымкул /РФ/. №4925084 /09/ 028136, заяв. 3.04.91; опубл. 10.05.94, Бюл. №22.
- 4. Пат. 2099759 РФ, МКИ G02B 27/18. Тепловизионный способ распознавания формы объекта и устройство для его осуществления / В.М. Тымкул, Л.В. Тымкул, М.И. Ананич, С.Г. Смагин /РФ/. №93037825/09; заяв 23.07.93; опубл. 20.12.97, Бюл. № 35.
- 5. Пат. 2141735 РФ, МКИ Н04N 5/33. Способ тепловизионного распознования формы объектов / В.М. Тымкул, О.В. Тымкул, Л.В. Тымкул, М.И. Ананич /РФ/. №95111870; заяв 11.02.95; опубл. 20.11.99, Бюл. №32.
- 6. Тымкул, В.М. Тепловизионная система с автоматизированным управлением поляризационной насадкой / В.М. Тымкул // III Междунар. конф. «Измерение, контроль и автоматизация производственных процессов» (ИКАПП-94). Т.1, 4.2.: Тез. докл.—Барнаул, 1994. С. 13.

УДК 681.7.069.32:681.327 *И.Б. Южик* ФГУП «ЦКБ Точприбор», Новосибирск

ИМПУЛЬСНЫЕ ЭОП С ЦИФРОВЫМ УПРАВЛЕНИЕМ

Одним из перспективных направлений оптоэлектроники является разработка устройств с использованием электронно-оптических преобразователей (ЭОП). Их развитие и внедрение в различные сферы человеческой деятельности обусловлено рядом ценных свойств и особенностей, присущих данному виду приборов. Для реализации всех требований к ЭОП возникла необходимость создания ВИП с цифровым управлением. Характерной особенностью этого прибора является полное цифровое управление логикой работы от компьютера.

I.B. Juzhik

Federal State Unitary Enterprise «The central design office of precision instruments», Novosibirsk

PULSE ELECTRO-OPTICAL DIGITAL CONTROL CONVERTER

One of perspective directions of an optoelectronics is development of devices with usage of image-converter tubes (electron-image amplifier). Their development and implantation in various spheres of human activity is caused by a series of valuable properties and the features proper in the given view of instruments. For embodying all requirements to an electron-image amplifier there was a necessity of making Secondary power supply with a digital control. Unique feature of this instrument is the complete digital control logic of operation from a computer.

С помощью электронно-оптических преобразователей можно обеспечить многократное усиление света, увеличение яркости изображения, создание непосредственной возможности наблюдения и исследования объектов в условиях низкой освещенности и в практической темноте. Такие приборы позволяют добиваться спектрального преобразования энергии излучения одного участка оптического спектра в другой. Создание такого класса приборов стало возможным с развитием новых ЭОП.

ЭОП предназначен для преобразования светового изображения в ближнем ИК диапазоне в видимый и является усилителем света. ЭОП характеризуют электронно-оптическим увеличением, коэффициентом усиления яркости, коэффициентом преобразования, пороговой чувствительностью, разрешающей способностью, постоянной времени и контрастно-частотной характеристикой.

Электронно-оптическое увеличение ЭОП определяется отношением линейных размеров изображений на экране ЭОП l_3 и на фотокатоде l_{κ} :

$$\Gamma_{90n} = \frac{l_{9}}{l_{\nu}} = \frac{d_{9}}{d_{\nu}} = \sqrt{\frac{A_{9}}{A_{\nu}}},$$

где d_{3} и d_{κ} - рабочие диаметры экрана и фотокатода;

 A_{2} и A_{K} - рабочие площадки экрана и фотокатода.

<u>Коэффициент преобразования светового потока</u> h - это отношение светового потока, испускаемого ЭОП, к световому потоку, попадающему на фотокатод. Если преобразователь используется как усилитель яркости изображения в видимой области спектра, то коэффициент усиления выражается в относительных единицах, т.е. $h = F_3/F_K$.

<u>Коэффициент яркости</u>. Это отношение величины яркости экрана ЭОП к соответствующей величине освещенности фотокатода:

$$\eta_{\scriptscriptstyle B} = \frac{B_{\scriptscriptstyle 3}}{E_{\scriptscriptstyle K}} = \frac{F_{\scriptscriptstyle 3} A_{\scriptscriptstyle K}}{\pi A_{\scriptscriptstyle 3} \Phi_{\scriptscriptstyle K}} = \frac{\eta}{\pi \Gamma_{\rm SO\Pi}^2} [\frac{\kappa \pi}{{\scriptscriptstyle M}^2 \pi \kappa}].$$

<u>Яркость темнового фона</u>. Это яркость свечения экрана ЭОП при отсутствии освещения на фотокатоде. Излучение экрана проявляется вследствие тепловой эмиссии фотокатода, световой обратной засветки фотокатода, за счет сцинтилляций, вследствие радиационных шумов. Преобладающим шумом является тепловой шум.

<u>Пороговая чувствительность ЭОП</u>. Под пороговой чувствительностью понимают то наименьшее количество световой энергии на фотокатоде, которое вызывает свечение экрана, заметное глазом.

<u>Разрешающая способность N</u> - зависит от размеров зерен люминофора, кружка рассеяния остаточных аберраций электронных пучков. Вследствие аберраций размер кружка рассеяния больше размера зерен люминофора.

Одним из путей повышения и выравнивания разрешающей способности по полю экрана является придание фотокатоду, а иногда и экрану, сферической формы, при этом кривизна фотокатода должна соответствовать кривизне поверхности электронного изображения. Такой способ практикуется все чаще, благодаря возможности использования волоконных оптических шайб требуемой кривизны.

В настоящее время в приборах ночного видения (ПНВ) в основном применяются преобразователи изображения с канальными электронными умножителями.

Усиление осуществляется при помощи микроканальной пластины (МКП), представляющей собой набор нескольких миллионов стеклянных трубочек, сложенных в единый пакет в виде диска. Внутренняя поверхность трубочки покрыта тонким слоем полупроводника, который является эмиттером вторичных электронов. К торцам блока трубочек подается напряжение, для чего на торцы диска при помощи напыления наносится слой металла.

Устройство ЭОП канального типа поясняется рис. 1.

Электроны с фотокатода фокусируются электронной линзой или равномерным полем на микроканальную пластину. Многократно усилившись в ней, вторичные электроны создают один элемент светящегося изображения. Чтобы электроны не пролетали МКП без соударения со стенками каналов,

каналы стараются располагать под небольшим углом к оси ЭОП. Это, однако, снижает качество изображения, так как заметен разброс электронов по скоростям и поэтому ощущается различие в фокусировке на экране быстрых и медленных электронов.

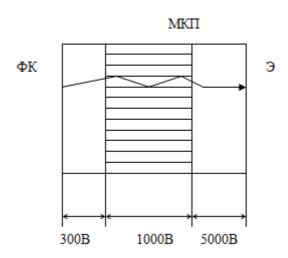


Рис. 1. Схема ЭОП с микроканальным усилителем тока

Усиленное МКП электронное изображение переносится на экран электронной линзой или равномерным полем.

Дальнейшее развитие конструкции ЭОП предполагает сопряжение его с фото-матрицей для преобразования изображения в видеосигнал. Это открывает дополнительные возможности по обработке изображения.

Для питания ЭОП требуются высокие напряжения порядка 1-6 кВ. Возможные способы формирования высоких напряжений:

- 1. С помощью трансформаторов;
- 2. Путем трансформирования и умножения напряжения;
- 3. Путем преобразования постоянного напряжения в переменное напряжение с последующим усилением;
 - 4. С помощью генераторов высокого напряжения;
 - 5. Применение атомных источников напряжения.

Конструкция вторичного источника питания (ВИП) должна обеспечивать электрическую прочность. Для исключения энергетических потерь высоковольтную часть ВИП изолируют от низковольтной и размещают в непосредственной близости от вакуумной части ЭОП.

первичных источников ЭОП качестве питания используются низковольтные источники постоянного тока: аккумуляторы или сухие батареи напряжением 1-26В. Параметры источников питания для ЭОП зависят от эксплуатации приборов. Например, условий полевых высоковольтный блок должен обеспечить необходимый срок работы прибора без замены источников питания, обладать нужной механической прочностью конструкции и стабильностью работы при изменении температуры, иметь минимальные массу и габариты.

Основные требования к вторичным источникам питания (ВИП) для ЭОП - это надежность, компактность, высокая эффективность и низкая себестоимость. Технология изготовления ВИП определяет реальный ресурс работы ЭОП.

Современное устройство, питающее ЭОП, должно обеспечить высокие требования на вакуумную часть с учетом погрешности большого числа элементов ВИП.

Для учета допусков погрешностей всех элементов ВИП необходимо:

- Определить номинальные значения параметров всех радиодеталей, входящих в ВИП, выбрать электрический режим полупроводниковых приборов и интегральных микросхем, учесть условия эксплуатации и требуемую точность выходных параметров;
- По заданным допускам на параметры ВИП можно определить параметры элементов.

Следовательно, задача сводится к тому, чтобы при выбранных допусках на элементы ВИП погрешности его выходных параметров не превышали заданных значений.

Каждый параметр ВИП представляет собой функцию параметров элементов, входящих в ВИП.

$$Q = \varphi(q_1, q_2, ..., q_n)$$
,

где Q – заданный параметр ВИП; q1,q2,....,qn – параметры элементов, входящих в ВИП.

Уравнение относительной погрешности для заданного параметра ВИП имеет вид

$$\frac{\Delta Q}{Q} = \sum_{i=1}^{n} A_i \frac{\Delta q_i}{q_i},$$

а относительная погрешность элемента

$$A_{i} = \frac{\Delta \varphi(q_{1}, q_{2}, ..., q_{n})}{\Delta q_{i}} \frac{q_{i}}{\varphi(q_{1}, q_{2}, ..., q_{n})}$$

Так как в нашем случае точность работы ВИП определяется несколькими параметрами, то составляется система уравнений погрешностей, число уравнений в которой равно числу определяющих параметров ВИП. После вывода уравнений погрешностей в общем виде, необходимо найти численные значения коэффициентов влияния. Коэффициенты могут быть функциями частоты или времени.

Существует также целый ряд экспериментальных методов определения коэффициентов влияния. В случае, когда коэффициенты влияния определяются из аналитических выражений, необходима экспериментальная проверка на сходимость для оценки величины методической погрешности. Погрешность должна быть допустимой при расчете из — за неточного аналитического описания физического процесса работы ВИП с учетом всех условий эксплуатации приборов.

Современная схема питания ЭОП должна учитывать:

- Температурные допуски элементов ВИП, потому что сочетание ряда случайных факторов при изготовлении элементов приводит к рассеянию величины их температурных коэффициентов;
- Допуски на старение элементов ВИП, причем функция старения различных элементов может иметь различный вид;
- Допуск на влажность, уход параметров ВИП под воздействием влаги обусловлен, в основном, изменением сопротивлений непроволочных резисторов от влажности.

Поэтому, для компенсации дестабилизирующих факторов нужно знать законы распределения параметров всех элементов ВИП или хотя бы количественные значения коэффициентов, по которым уже можно рассчитать допуски с высокой точностью.

Для реализации всех требований к ЭОП возникла необходимость создания ВИП с цифровым управлением. Разработанный ВИП имеет малые габариты и вес, и рассчитан на работу в условиях механико-климатических воздействий. Технические характеристики ВИП соответствуют современным требованиям к ЭОП и приборам ночного видения (ПНВ):

- Обеспечение режима "электронной диафрагмы";
- Обеспечение режима "электронного затвора";
- Обеспечение большого динамического диапазона ЭОП или работы ПНВ в условиях изменяющейся освещенности;
- Обеспечение возможности работы ПНВ в условиях дымки, тумана, дождя;
 - Обеспечение работы ПНВ с лазерной подсветкой.

Функциональная схема ЭОП с цифровым управлением представлена на рис. 2.

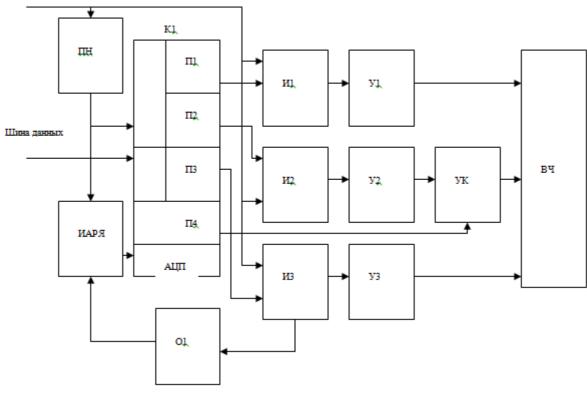
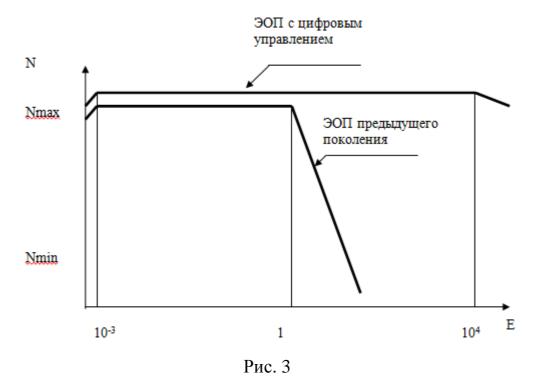


Рис. 2

ПН – преобразователь, предназначен для формирования функциональных напряжений;

ИАРЯ – интегратор, формирует аналоговый сигнал пропорциональный яркости экрана ЭОП;

К1 – микроконтроллер, производит арифметические, логические операции цифрового источника питания и хранит исходные данные, необходимые для формирования выходных напряжений источника питания и корректировки их при воздействии внешних факторов;


И1,И2,И3 – интеграторы 1,2,3, формируют синусоидальные напряжения;

У1,У2,У3 – умножители 1,2,3, формируют высокие напряжения, соответствующие требованиям на вакуумную часть ЭОП;

УК – устройство ключевое, формирует импульсное напряжение между фотокатодом и входом МКП;

ВЧ – вакуумная часть усиливает энергию светового потока.

Были проведены сравнительные исследования ЭОП с цифровым управлением и ЭОП предыдущего поколения. Исследования подтвердили значительное увеличение динамического диапазона работы ЭОП с цифровым управлением. Увеличение динамического диапазона ЭОП обеспечивается использованием цифрового ВИП формирующего импульсы напряжения между фотокатодом и входом МКП с большой скважностью. Сравнительный график зависимости разрешающей способности от уровня освещенности на фотокатоде ЭОП представлен на рис. 3.

N – разрешающая способность ЭОП;

Е – уровень освещенности на фотокатоде ЭОП.

Использование ВИП с цифровым управлением обеспечивает работу ЭОП без потери разрешающей способности при высоких уровнях освещенности.

Важным параметром цифрового источника питания для практического применения является возможность регулировки выходных напряжений с использованием шины данных, что ведет к повышению эксплуатационной надежности данного класса приборов.

При повышенных и пониженных температурах окружающей среды в цифровом источнике питания реализуется возможность компенсации дестабилизирующих факторов.

Ресурс работы ЭОП определяется возможностями современной технологии и может составлять более 10000 часов.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

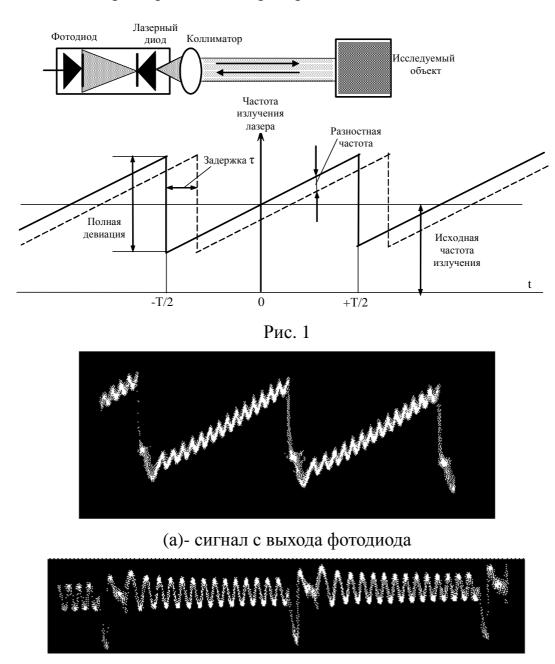
- 1. Карлов, Н.В. Лекции по квантовой электронике [Текст] / Н.В. Карлов // М.: Наука 2001.
- 2. Громыко Н.В., Сарафанов А.В. Современные проблемы радиоэлектроники [Текст] / ред. А.И. Громыко, А.В. Сарафанов.// сборник научных трудов, Сиб. федерал. ун-т, Политехн. ин-т ; Красноярск : Φ ГОУ ВПО С Φ У. -2007. -678 с.
- 3. Николаев, А. В. Использование информационных технологий поддержки жизненного цикла изделий при производстве комплектующих в авиа-, приборо- и машиностроении [Текст] / А.В. Николаев, Л.В. Кузнецова, А.С. Кондратьева // учебно-метод. комплекс / Ульянов. гос. ун-т. Ульяновск : УлГУ. 2006. 71 с.

УДК 681.787 В.С. Соболев, А.М. Щербаченко, А.М. Харин Институт автоматики и электрометрии СО РАН, Новосибирск

ПРИМЕНЕНИЕ АКТИВНОЙ ЛАЗЕРНОЙ ИНТЕРФЕРОМЕТРИИ С ЧАСТОТНОЙ МОДУЛЯЦИЕЙ ДЛЯ ОЦЕНКИ НАНОПЕРЕМЕЩЕНИЙ И НАНОВИБРОСМЕЩЕНИЙ ДИФФУЗНО ОТРАЖАЮЩИХ ОБЪЕКТОВ

Представлены теория и техническое описание устройств для измерения нановибраций и наноперемещений, построенных на основе оптической обратной связи частотной модуляции в полупроводниковых лазерах.

V.S. Sobolev, A.M. Shcherbachenko, A.M. Kharin The Institute of Automation and Electrometry, the Siberian branch of the Russian Academy of Sciences


APPLICATION OF SELFMIXING LASER INTERFEROMETRY WITH FREQUENCY MODULATION FOR DIFFUSED SCATTERING OBJECTS NANODISPLACEMENTS AND NANOVIBRATION ESTIMATES

The theory and the technical description of the devices based on selfmixing interferometry with frequency modulation are presented.

Существующие методы лазерной интерферометрии отличаются большой сложностью и трудностью выполнения юстировочных работ, они требуют применения зеркальных отражателей, а соответствующая аппаратура имеет высокую стоимость и не может работать в цеховых условиях. В то же время, в последние годы получило существенное развитие новое направление интерферометрии, известное как интерферометрии с оптической обратной связью. Оно свободно от перечисленных недостатков /1-3/. Дальнейшее развитие этого направления, позволившее решить известную трудную задачу определения направления движения исследуемого объекта и существенно расширить области применения, связано с использованием частотной модуляции излучения полупроводниковых лазеров. Принцип работы такого интерферометра поясняет рис. 1.

Излучение полупроводникового лазера фокусируется на исследуемый объект, а рассеянное им излучение попадает обратно в лазер, где за счет высокого коэффициента усиления активной среды существенно увеличивает свою мощность и интерферирует с исходным излучением, направленным назад на катод встроенного в лазер контрольного фотодиода. Эта конфигурация полностью эквивалентна свойствам известного интерферометра Майкельсона. Чтобы устранить основной его недостаток – нечувствительность к направлению движения исследуемого объекта, излучение лазера линейно модулируется путем

линейно изменяющегося во времени инжекционного тока. При работе такого интерферометра отраженный или рассеянный объектом свет приходит в лазер с некоторой задержкой по времени, обусловленной конечным значением скорости света. В результате, даже при неподвижном объекте интерференция исходного и рассеянного излучений приводит к тому, что выходной ток фотодиода (рис. 2) периодически изменяется с частотой, которая обусловлена крутизной модуляционной характеристики лазера и расстоянием до объекта.

(б) – сигнал после компенсации пилообразной помехи

Рис. 2

Эта частота играет роль несущей и позволяет легко оценивать направление движения объекта, так как его движение по направлению к объекту увеличивает частоту интерференционного сигнала, а при движении прочь – уменьшает.

Теперь рассмотрим кратко теорию работы такого интерферометра. Пусть инжекционный ток, питающий лазерный диод, периодически изменяется по линейному закону. Тогда, если амплитуда этих изменений невелика по сравнению с номинальным током, частоту излучения можно представить следующим выражением:

$$f(t) = f_0 + \alpha t$$
 при $(-T/2) < t < (T/2)$, (1)

где f_0 — исходная частота излучения лазера; $\alpha = df/dt$ — крутизна изменения его частоты во времени под влиянием модулирующего тока; t — текущее время; T — период пилообразной модуляции.

Фаза излучаемого поля как интеграл от частоты запишется, как

$$\varphi(t) = 2\pi \int_{0}^{t} (f_0 + \alpha t) dt = \omega_0 t + 2\pi \alpha t^2 / 2 + \varphi_0, \quad (2)$$

где φ_0 – фаза исходного оптического поля в момент времени t=0.

С учетом (2) зондирующее поле $E_{Z}(t)$ определится, как

$$E_{z}(t) = E_{z_0} \exp \left[-j \left(\omega_0 t + 2\pi \alpha t^2 / 2 + \varphi_0 \right) \right].$$
 (3)

Отраженное от исследуемого объекта поле, пришедшее в лазер вследствие конечного значения скорости света, будет задержано на время τ (см. рис. 1, δ). Ясно, что

$$\tau = 2S(t)/c, \qquad (4)$$

где S(t) — расстояние между лазером и объектом исследования; c — скорость света.

Исходя из этого, поле, отраженное и усиленное в активной среде лазера, будет иметь вид

$$E_{R}(t) = E_{R0} \exp \left\{ -j \left[\omega_{0}(t-\tau) + 2\pi\alpha(t-\tau)^{2} / 2 + \varphi_{0} \right] \right\}. \quad (5)$$

Суммарное поле на контрольном фотодиоде, встроенном в корпус лазера, запишется как

$$E_{\Sigma}(t) = E_{Z}(t) + E_{R}(t), \qquad (6)$$

а фототок, пропорциональный квадрату модуля этого поля, определится следующим образом:

$$i(t) = \kappa \left| E_Z(t) + E_R(t) \right|^2 =$$

$$= \kappa \left[E_{Z_0}^2 + E_{R_0}^2 + 2E_{Z_0} E_{R_0} \cos(\omega_0 \tau + 2\pi\alpha \tau t - \pi\alpha \tau^2) \right],$$
(7)

где к – чувствительность фотоприемника.

Несущая информацию интерференционная компонента сигнала (7) имеет вид

$$I(t) = I_0 \cos(2\pi\alpha\tau t + \omega_0\tau - \pi\alpha\tau^2). \tag{8}$$

Осциллограммы этого сигнала непосредственно с выхода фотоприемника и после компенсации амплитудной модуляции представлены на рис. 2 при частоте модуляции 20 кГц и расстоянии до рассеивающего объекта 0,5 м. Хорошо видна пилообразная помеха, обусловленная изменением мощности лазера, и полезная часть интерференционного сигнала, частота которой в данном случае

составляет 300 кГц. Небольшие пики на каждом периоде модуляции объясняются неполной компенсацией пилообразной части сигнала.

Переменную часть фазы, обусловленную перемещением, как следует из (8), определим следующим образом:

$$\Delta \varphi(t) = 4\pi \Delta S(t)/\lambda + 4\pi \alpha t \Delta S(t)/c + 8\pi \alpha S_0 \Delta S(t)/c^2 - 4\pi \alpha \Delta S^2(t)/c^2, \quad (9)$$
 где $\Delta S(t) = \int_0^t v(t)dt$.

Оценим вклад каждой компоненты по отношению к первой. Из (9) следует, что

$$\varphi_2/\varphi_1 = \alpha t \lambda/c \qquad (10)$$

Отметим, что время t в (10) не непрерывно. Оно изменяется от 0 до T, причем максимальное значение t из соображения быстродействия создаваемой аппаратуры выбирается достаточно малым, порядка 10^{-4} с. Тогда, при обычном значении α = 10^{14} Γ ц/с и λ =0,65 мкм отношение (10) будет иметь порядок $2\cdot10^{-5}$ и, следовательно, вторым членом выражения (9) можно пренебречь.

Соответственно, для третьего члена (9) отношение

$$\varphi_3/\varphi_1 = 2\alpha S_0 \lambda/c^2 \tag{11}$$

Если принять, что измерение перемещений происходит при $S_0=1$ м, что вполне реально, то $\phi_3/\phi_1\approx 10^{-9}$ и, следовательно, третьим членом фазы (9) также можно пренебречь.

Теперь найдем отношение

$$|\varphi_4|/\varphi_1 = \alpha \Delta S(t) \lambda/c^2$$
 (12)

Если оценивать малые перемещения, то величину ΔS можно принять равной 0,1 м. Тогда

$$|\varphi_4|/\varphi_1 \approx 6 \cdot 10^{-11}$$
 (13)

и, следовательно, и четвертым членом фазы также можно пренебречь.

Таким образом, основной вклад в изменение фазы сигнала дает первый член, равный $4\pi\,\Delta S(t)/\lambda$. Измерение этого приращения, к сожалению, наталкивается на определенные трудности. Как уже указывалось, в отличие от интерферометра Майкельсона фаза получаемого сигнала имеет разрывы на каждом периоде модуляции, что, естественно, препятствует оценке ее непрерывных изменений, обусловленных перемещением. Однако задача решается, если оценку изменений фазы проводить на каждом периоде модуляции путем оценки длительности отрезков времени, получаемых как длительности выбросов сигнала за нулевой уровень от начала каждого периода модуляции и подсчете целых его периодов, если перемещения превысит половину длины волны излучения лазера. Функциональная схема измерителя показана на рис. 3.

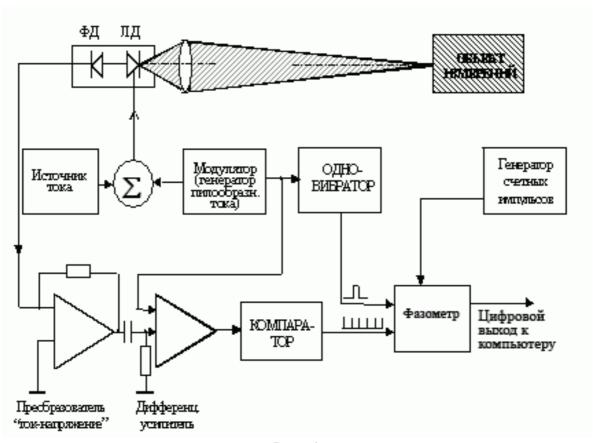
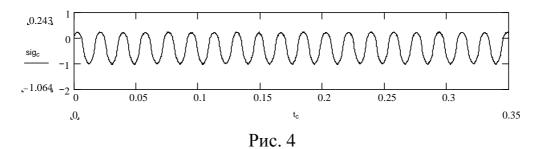



Рис. 3

Метрологические исследования его макетного образца прибора показали, что его разрешение составляет 8 нм, динамический диапазон ± 10 см, быстродействие 10^{-3} с. Расстояние между измерителем и объектом исследования может меняться от5 до 50 см. При снижении быстродействия разрешение может быть улучшено до единиц нанометров. На рис. 4 представлены результаты измерения смещений диффузора динамического громкоговорителя с амплитудой колебаний, составляющей одну интерференционную полосу, то есть 325 нм.

Измеритель имеет интерфейс к компьютеру, что позволяет получать все необходимые статистические характеристики параметров движения исследуемого объекта on line.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Bosch Th., Servagent N., Donati S.. Optical feedback interferometry for sensing application.// Optical Engineering 2001. 40 N 1, P.20.
- 2. Giuliani G., Norgia M., Donati S. and Bosch Th.. Laser diode self-mixing technique for sensing applications.// Journ. Opt. A: Pure Appl. Opt. 2002. 4. P. 283.
- 3. Соболев В. С., Кащеева Г.А. Активная лазерная интерферометрия с частотной модуляцией // Автометрия. 2008. 44, N 6., C. 49.

© В.С. Соболев, А.М. Щербаченко, А.М. Харин, 2010

УДК 520.2.067 В.Л. Парко, Т.Н. Хацевич СГГА, Новосибирск

АПОХРОМАТИЧЕСКИЙ ОБЪЕКТИВ БЕЗ ИСПОЛЬЗОВАНИЯ ОСОБЫХ СТЕКОЛ

Рассмотрены примеры создания апохроматических объективов без использования особых стекол. Предложена новая схема такого объектива с улучшенными оптическими характеристиками.

V.L. Parko, T.N. Khatsevich Siberian State Academy of Geodesy (SSGA) 10 Plakhotnogo St., Novosibirsk, 630108, Russian Federation

APOCHROMATIC OBJECTIVE WITHOUT USING SPECIAL GLASSES

Examples of apochromatic objectives' design without using of special glasses are considered. The new design of such objective with the improved optical performances is offered.

В высококачественных оптических системах, работающих в достаточно широком спектральном диапазоне, к которым относятся и объективы астрономических приборов, необходимым условием получения качественного изображения является не только устранение хроматизма положения, но и значительное уменьшение или полное устранение вторичного спектра. Наличие остаточного вторичного спектра достаточно часто является фактором, ограничивающим предельные характеристики линзовых технические объективов, в частности его относительное отверстие. В традиционных апохроматах вторичный спектр корригируется путем использования оптических материалов, обладающих особым ходом дисперсии, к числу которых относятся, например, такие оптические стекла как курцфлинт или кронфлинт, некоторые кристаллы и оптические жидкости. Ограничения по диаметрам заготовок, стоимости материалов, стойкости к внешним воздействиям и технологические трудности заставляют избегать их применения при расчете объективов астрономических приборов, ориентированных на серийное производство.

До середины 20-ого столетия было общепризнанным, что устранение или значительное сокращение вторичного спектра в линзовых оптических системах невозможно без использования материалов, имеющих особый ход дисперсии. В 60-х годах в работах Г.М. Попова [1] показано, что в трехлинзовой тонкой системе может быть существенно уменьшен вторичный спектр при использовании обычных марок стекол как отечественного, так и немецкого производства. В этот же период Винн и Маккарти [2, 3] доказали и рассчитали

объективы, состоящие из двух компонентов, разделенных значительным по величине воздушным промежутком, в которых исправление вторичного спектра было осуществлено путем использования обычных стекол. При этом в объективе применено три марки стекла.

Дальнейшее развитие идеи использования воздушной толщины между компонентами для коррекции хроматических аберраций при ограниченном обычных марок стекол привело трехкомпонентной числе К астрономического рефрактора-апохромата, предложенной в 2006 г. украинским оптиком Р. Дупловым [4], в которой использованы две марки стекла. Автором предложены различные комбинации марок стекол, позволяющие обеспечить апохроматическую коррекцию. В примере, показанном на рис. 1, каждый из компонентов схемы выполнен из двух линз, причем второй и третий склеенные, при этом относительное отверстие объектива составляет 1:7, фокусное расстояние 490 мм, угловое поле 0,5°.

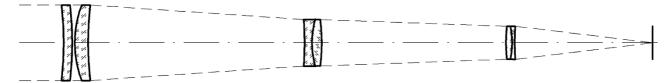


Рис. 1. Оптическая схема апохромата Р. Дуплова

того, что первый компонент схемы обладает большой положительной оптической силой, последующие компоненты имеют по сравнению с ним значительно меньшие световые диаметры, что способствует уменьшению массы и снижению стоимости оптики астрономического прибора. Вместе с тем наличие в первом компоненте двух менисков, диаметры которых определяются диаметром входного зрачка объектива, определило и возможные пути совершенствования этой схемы: для уменьшения массы, трудоемкости изготовления и юстировки целесообразно первый компонент попытаться Такое решение однолинзовым. апохроматического трехкомпонентного объектива, все линзы которого выполнены из двух марок предложено 2007 оптического стекла, В Г. Новосибирским $(H\Pi 3)$ приборостроительным заводом [5],лидером производстве отечественных серийных астрономических телескопов. Его оптическая схема, представленная на рис. 2, обеспечивает при фокусном расстоянии 980 мм относительное отверстие 1:7,7 и угловое поле 1,5°. Апохромат НПЗ в настоящее время выпускается мелкими сериями.

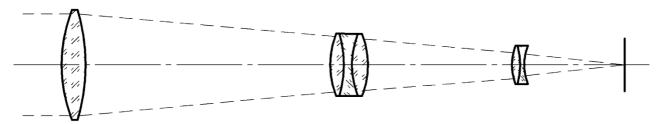


Рис. 2. Оптическая схема апохромата НПЗ

Вместе с тем наличие трехлинзовой склейки во втором компоненте снижает технологичность, что критично для серийного производства, а недостаточная для нужд фото- и видеорегистрации степень коррекции остаточного хроматизма в коротковолновой области спектра ограничивает величину относительного отверстия апохромата НПЗ.

Проведенный нами анализ обсуждаемой схемы показал, что конструктивное исполнение компонентов, использованные в ней марки стекол не позволяют уменьшить число линз и повысить относительное отверстие без снижения качества изображения, а расширение спектрального диапазона в синюю область затруднено из-за недостаточных коррекционных возможностей третьего компонента.

Авторы статьи задались целью рассчитать апохроматический объектив, вобравший в себя достоинства описанных выше систем и лишенный указанных недостатков. В результате была получена схема, представленная на рис. 3.

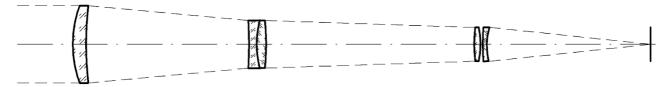


Рис. 3. Оптическая схема апохромата

Выполнение первого компонента в виде одиночного мениска, а третьего компонента — из двух близкорасположенных линз, позволило повысить коррекцию аберраций широких наклонных пучков и увеличить относительное отверстие системы. Более оптимальный подбор марок стекол и выполнение второго компонента отрицательным позволило уменьшить число линз в и повысить относительное отверстие при сохранении апохроматической коррекции системы. Конструктивное исполнение компонентов и линз является, по нашему мнению, технологичным для серийного производства. В качестве примера использования предложенной схемы для объектива астрономического прибора рассчитан объектив со следующими характеристиками:

- Фокусное расстояние 940 мм;
- Относительное отверстие 1:7;
- Рабочий спектральный диапазон от 0,42 до 0,7 мкм,
- Основная длина волны 0,546 мкм,
- Угловое поле в пространстве предметов -1.5° ;
- Линейное поле в пространстве изображений 24,6 мм.

Для подтверждения высокого качества изображения, даваемого разработанной оптической системой, далее приводятся характеристики, наиболее часто используемые для оценки качества изображения в оптических системах аналогичного назначения (рис. 4, 5, 6).

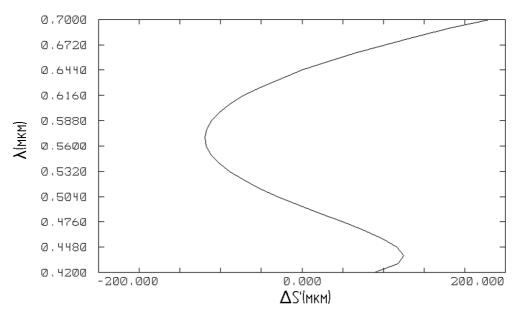


Рис. 4. График продольной хроматической аберрации

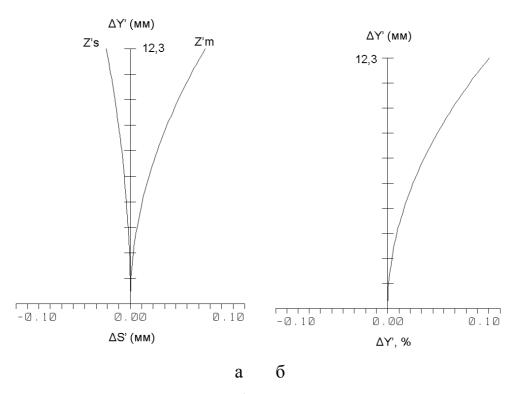


Рис. 5. Графики аберраций

Характер кривой продольной хроматической аберрации (рис. 4) свидетельствует о том, что в указанном спектральном диапазоне величина остаточной хроматической аберрации равна 0,025 мм, что составляет менее 1/3700 от величины фокусного расстояния объектива. Остаточный астигматизм (рис. 5 а) на краю поля зрения не превышает 0,09 мм, а дисторсия (рис. 5 б) менее 0,1%.

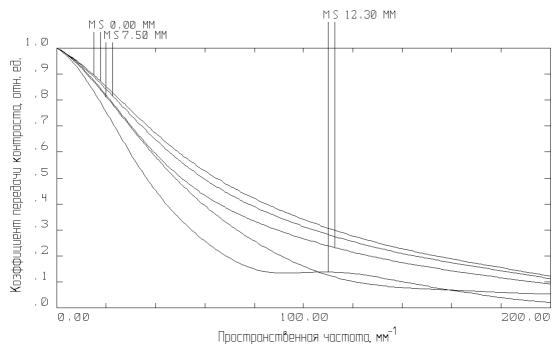


Рис. 6. Графики ЧКХ для различных точек поля

Из графиков частотно-контрастной характеристики (ЧКХ) (рис. 6) следует, что при коэффициенте передачи контраста 0,1 пространственная частота в плоскости изображений для всех точек изображения в пределах поля зрения составляет не менее 120 мм⁻¹, что соответствует 1,8 угловой секунды в пространстве предметов и является приемлемым для серийно выпускаемых телескопов.

В настоящее время рассчитанная оптическая система проходит процедуру патентования. Представляется возможным использование ее не только как самостоятельный объектив, но и в качестве корректора в зеркально-линзовых объективах астрономических приборов.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Попов, Г.М. Современная астрономическая оптика [Текст] / Г.М. Попов // Наука. Гл. ред. физ.-мат. лит. 1988. С. 55 68.
- 2. U.S. Patent No.2,698,555 Optical system with corrected secondary spectrum [Tekct] / E.L. McCarthy. -4.01.1955.
- 3. Wynne, C.G. Secondary spectrum correction with normal glasses [Tekct] / C.G. Wynne // Opt. Commun. 1977. № 21. C. 419 424.
- 4. Duplov, R. Apochromatic telescope without anomalous dispersion glasses [Текст] / R. Duplov // Applied Optics -2006. № 6. С. 18-30.
- 5. Пат. 2331094 Российская федерация, MΠK7G02B 9/28. заявитель Апохроматический [Текст] объектив патентообладатель И Федеральное государственное унитарное предприятие «Производственное объединение «Новосибирский приборостроительный No 2006121862/28; заявл. 08.06.2006; опубл. 10.08.2008, Бюл. № 22. – С. 7.

УДК 681.17.18 В.П. Бессмельцев, Д.М. Афанасьев, Н.В. Голышевский, М.В. Максимов ИАиЭ СО РАН, Новосибирск

ОПТИЧЕСКАЯ СХЕМА СИНТЕЗАТОРА БИОЧИПОВ НА ОСНОВЕ ЦИФРОВОЙ МАТРИЦЫ МИКРОЗЕРКАЛ

В статье описана оптическая схема синтезатора биочипов на основе цифровой матрице микрозеркал и схемы Оффнера. Расчет оптической схемы Оффнера позволил определить форму фокальной поверхности, определить технические требования к точности позиционирования оптических элементов. Тестовые эксперименты показали удовлетворительную работоспособность оптической схемы для синтеза биочипов, содержащих 5 тыс. ячеек с размером каждой 70×70 мкм.

D. Afanasiev, V. Bessmeltsev, N. Goloshevsky, M. Maksimov Institute of Automation and Electrometry of the Siberian Branch of the Russian Academy of Sciences (IA&E),

1 Koptyuga, Novosibirsk, 630090, Russian Federation

OPTICAL SCHEME OF BIOCHIP SYNTHESIZER BASED ON DIGITAL MICROMIRRORS DEVICE

The optical scheme of biochip synthesizer based on Digital Micromirrors Device and Offner relay is described in this paper. Calculation of the Offner relay allows determining the shape of the focal surface and the technical requirements for precision positioning of optical elements. Test experiments have shown satisfactory resolution of the optical scheme for the synthesis of biochips containing 5000 cells with the size of each 70×70 microns.

В современных биологических исследованиях для анализа биологических объектов широко используются так называемые биочипы — наборы тестовых олигонуклиотидных молекул на плоской платформе. Поскольку скорость и стоимость проведения биологического анализа напрямую зависят от общего количества молекул на платформе, их плотности на единицу площади и молекулярной длины, то возникает задача синтеза больших массивов подобных молекулярных структур. Известно большое количество зарубежных разработок, позволяющих осуществлять синтез с полем записи до нескольких десятков мкм, количеством ячеек до десятков тыс. и общей площадью бичипа до нескольких см² [1]. Данные системы применяют, как правило, так называемый, контактный метод синтеза. Неконтактный метод синтеза — основанный на принципах фотолитографии, позволил уникальным исследовательским группам создавать

биочипы содержащие до 400 тыс. шт. ячеек на $1,6\times1$ см 2 [2, 3]. В России подобные системы отсутствуют.

Предложено создать автоматизированную оптическую проекционную систему для синтеза биочипов с динамически формируемым световым полем. На первом этапе работы требуется освещать рабочее поле 7×13 мм с минимальной ячейкой 400×600 мкм, расстоянием между соседними ячейками 150 мкм и плотностью облучения порядка 10 мВт/см² на длине волны 365 нм. В дальнейшем на подложке 10×14 мм должно располагаться до 10 тыс. отдельных ячеек, что соответствует размеру ячейки 70×70 мкм и расстоянием между ними 30 мкм.

Учитывая, что настройка оптической схемы в УФ диапазоне является трудоемкой и небезопасной задачей, нами выбиралась оптическая схема, которая позволяет настраивать систему в видимом диапазоне, а после этого легко переходить в УФ диапазон, не нарушая параметров настройки. Хорошо известно, что зеркальные системы реализуют такую возможность, так как полностью лишены хроматических аберраций.

Соответственно, была выбрана система, основанная на применении микрозеркальной (DMD) матрицы [4] схемы Оффнера (Offner_Relay) [5]. Принцип действия проекционной схемы следующий: квазиколлинеарный пучок света падает на матрицу микрозеркал, которая выполняет роль маски. Лучи отраженные от матрицы микрозеркал пройдя через схему Оффнера формируют точное изображение маски, в плоскости которой располагается подложка с синтезируемым биочипом. Эффективность схемы Оффнера ДЛЯ проекционных и регистрационных систем объясняется отсутствием хроматических аберраций за счет применения зеркальной оптики, а также минимизацией аберраций типа кома благодаря взаимной симметричной согласованности элементов и их симметричности расположения [6-9].

Ключевым элементом проекционной системы является матрица микрозеркал, которые выполнены из алюминиевого сплава с высоким коэффициентом отражения. Под действием электрического поля каждое из зеркал может отклоняться в одно из двух положений, угол между которыми составляет 24°. В одном из положений зеркал отраженные лучи направляются в схему Оффнера.

Схема Оффнера состоит из двух зеркал (рис. 1). Большое зеркало является вогнутым, а малое — выпуклым. Радиус кривизны вогнутого зеркала ровно в 2 раза больше радиуса выпуклого. Оптические оси и центры радиусов кривизны зеркал совпадают. С целью однозначного переноса динамически формируемого светового поля в плоскости матрицы в плоскость подложки, подложка и маска располагаются симметрично относительно оптической оси зеркал, и на двойном фокусном расстоянии от вогнутого зеркала.

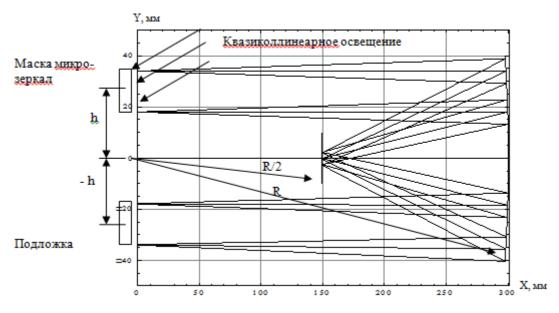


Рис. 1. Схема Оффнера

Нами проведено расчетное моделирование схемы Оффнера для конкретной оптической конфигурации с помощью пакетов ZEMAX и Mathematica 6.0. Все расчеты проводились в рамках геометрической оптики. С помощью пакета ZEMAX были выявлены качественные особенности аберраций схемы в трехмерном моделировании, а с помощью Mathematica 6.0 были осуществлены детальные расчеты в меридиональной плоскости, проходящей через матрицу и подложку.

Исходные параметры оптической схемы^

- Радиус кривизны 149.5 мм и диаметр 20 мм выпуклого зеркала;
- Радиус кривизны 300.53 мм и диаметр 80 мм вогнутого зеркала;
- Размер микрозеркальной матрицы $10,5\times14$ мм, размер отдельного микрозеркала $13,6\times13,6$ мкм, зазор между соседними микрозеркалами 1 мкм.

В результате расчетов выявлены общие закономерности формирования изображения после прохождения схемы Оффнера, построена точная форма фокальной поверхности в меридиональной плоскости, выбрано оптимальное расположение экспонируемой подложки (рис. 2), построена зависимость размера каустики от поперечной координаты формируемого изображения (рис. 3). Также проведено детальное изучение влияния геометрических параметров расположения большого, малого сферических зеркал, подложки на форму и расположение фокальной поверхности, а также размер каустики.

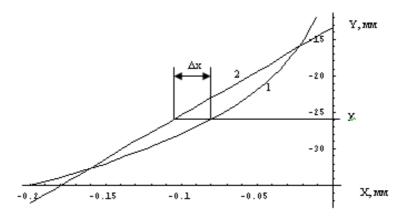


Рис. 2. Кривая 1 — фокальная поверхность после прохождения схемы Оффнера, прямая 2 — оптимальное место расположения плоскости подложки.

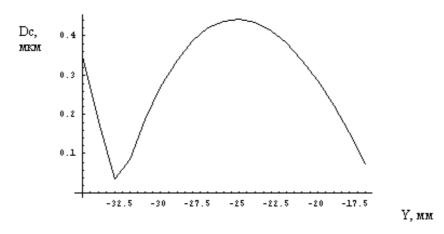


Рис 3. Размер каустики в меридиональной плоскости в зависимости от поперечной координаты у формируемого изображения

В соответствии с осуществленными расчетами были сформулированы следующие требования на геометрическое позиционирование элементов схемы (табл. 2).

Таблица 2. Точность позиционирования элементов оптической схемы

	В поперечном направлении, мм	В продольном направлении, мм	Угол наклона в меридиональной плоскости, град.
Вогнутое зеркало	±0,150	±0,150	0,2
Выпуклое зеркало	±0,150	±0,150	0,2
Подложка биочипа	$\pm 0,0005$	±0,050	0,3

Для проверки работоспособности предложенной проекционной системы была собрана экспериментальная установка, оптическая схема которой приведена на рис. 4.

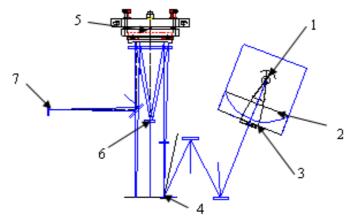
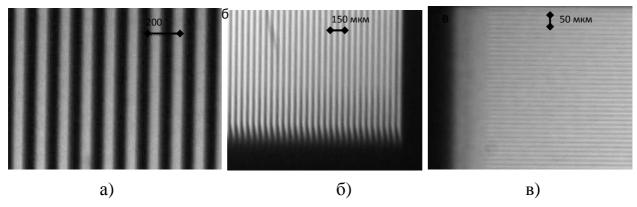



Рис. 4. Оптическая схема экспериментальной установки

На схеме: 1 — ртутная лампа, 2 — коллимирующая линза, 3 — фильтр, 4 — цифровая матрица микрозеркал, 5 — вогнутое зеркало, 6 — выпуклое зеркало, 7 — матрица фоторегистрации.

В процессе эксперимента, квазиколлинераный пучок света в видимом матрицу микрозеркал. матрице диапазоне освешал Ha микрозеркал формировалась последовательность масок, представляющих собой чередующиеся периодические полосы. Формируемое изображения после прохождения схемы Оффнера фиксировалось фотоаппаратом CANON 450 с матрицей регистрации без объектива.

На рис. 5 (а-в) приведены изображения зарегистрированные матрицей фотоаппарата без объектива в плоскости экспонирования подложки биочипа при формировании маски изображения на микрозеркальной матрице чередующихся полос: (а) — ширина полос 5 пикселей, (б) — ширина полос 2 пикселя, (в) — ширина полос 1 пиксель. На рис. 6 (г-е) приведены графики относительной освещенности: (г) — ширина полос 5 пикселей, контраст M=0.899, (д) — ширина полос 2 пикселя, контраст M=0.899, контраст M=0.055.

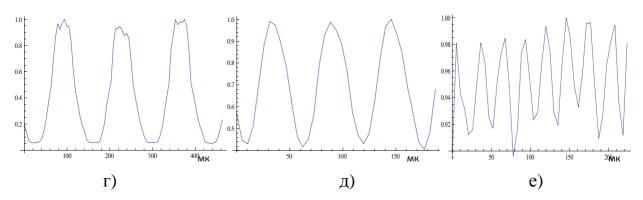


Рис. 5. Изображения и графики относительной освещенности

Заключение. В рамках геометрической оптики осуществлено численное моделирование оптической схемы Оффнера. Первоначальное моделирование позволило определить рабочие геометрические параметры схемы Оффнера. Был разработан программный код, который оказался эффективным инструментом по расчету кривой фокусируемого изображения в меридиональной плоскости после прохождения через схему Оффнера, а также расчету размера каустики отображаемых точек исходного изображения. Текущие свойства микрозеркальной матрицы позволяют создать проекционную систему с синтезируемой плотностью ДНК-структур до 500 тыс. шт./см². В соответствии с этой задачей, опираясь на результаты численного моделирования, были сформулированы конкретные технические требования точность позиционирования отдельных элементов схемы Оффнера.

В процессе экспериментальной части была проверена работоспособность проекционной системы на основе микрозеркальной матрице и схемы Оффнера с квазиколлинеарного источника освещения (ртутная коллимирующей линзой). Полученные результаты показали фактическую работоспособность проекционной системы с рабочим полем 10,5×14 мм и единичной ячейкой засветки 70×70 мкм, и расстоянием между ними 70 мкм (5 микрозеркальной матрице). Данные пикселей параметры позволяют синтезировать биочип с общим количеством ДНК- структур 5 тыс. шт., что на два порядка превышает требования первоначального этапа. Тестирование системы выявило недостаточную эффективность применяемой методики настройки оптической схемы. Несмотря на это, эксперименты показали работоспособность проекционной принципиальную пространственном разрешении до уровня 14-28 мкм, а значит и возможность создания синтезатора биочипа с максимально возможной плотностью ячеик до 500 тыс. шт./см².

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Barbulovic-Nad, I., Lucente, M. Yu Sun, M., Zhang, M., Wheeler, A.R., Bussmann, M. Bio-Microarray Fabrication Techniques—A ReviewSingh-Gasson, //Critical Reviews in Biotechnology, 2006. 26 P. 237–259.
- 2. S., Green, R. D., Yue, Y. J., Nelson, C., Blattner, F., Sussman, M. R., and Cerrina, F. Maskless fabrication of lightdirected oligonucleotide microarrays using a digital micromirror array.//Nature Biotechnology. 1999. 17(10) P. 974–978.

- 3. Pirrung, M. C. How to make a DNA chip.// Angewandte Chemie-International Edition. 2002. 41(8) P. 1277–1289.
- 4. Sampsell, J.B. Digital micromirror device and its application to projection displays.//J. Vac. Sci. Technol. 1994. B12 P. 3242–3246.
 - 5. Offner, A.//Optical Engineering, 1975. v.14 №2, P. 130-132.
 - 6. Patent U.S. № 7,081,954 (July 25, 2006).
 - 7. UK Patent Application GB 2332 553 (23.06.1999).
 - 8. L. Mertz, "Excursions in Astronomical Optics",1996, Springer.
- 9. Patent WO/2007/027325 OFFNER RELAY FOR PROJECTION SYSTEM (08.03.2007).

© В.П. Бессмельцев, Д.М. Афанасьев, Н.В. Голышевский, М.В. Максимов, 2010 УДК 681.783 С.А. Шойдин СГГА, Новосибирск

К ВОПРОСУ СИНТЕЗА ГОЛОГРАММ ОТДЕЛЬНЫМИ ГОЛОГРАФИЧЕСКИМИ РЕШЁТКАМИ

В докладе представлены результаты исследований по синтезу простых голографических изображений дискретным набором участков голографической решётки для реализации рассеивателей, использующихся в устройстве по патенту РФ № 2242776.

S.A. Shoydin SSGA, Novosibirsk

SYNTHESIS OF HOLOGRAMS BY DISCRETE HOLOGRAPHIC ARRAYS

In the report are presented results of researches on synthesis of simple holographic images by a discrete set of sites of a holographic lattice, used in the device under the patent of the Russian Federation N 2242776.

Голографический метод создания изображения использует механизм дифракции света на меняющейся в пространстве решётке. При этом, на каждом участке голограммы может присутствовать своё направление и свой период такой решётки, а иногда и целый набор наложенных в одном месте таких решёток. В общем случае, синтез произвольной голограммы по этой причине затруднён. Однако есть случаи, когда требуется восстанавливать изображение не реально существующих объектов, а некоторых их образов. Так, например, в разработанных ранее голографических бытовых осветительных приборах [1, 2] не требуется наложения нескольких решёток в одном месте, т. к. основной задачей является синтез простейших ортоскопических изображений, в виде точки, пятна, конуса, других простых геометрических фигур.

Для простых фигур иногда возможно пространственное разделение участков голограммы, создающих ортоскопическое изображение по частям. Для этого необходимо только согласовать углы дифракции на каждом из участков, а также их размеры и размеры элементов восстановленного изображения. Конечно, необходимо выполнять требования сглаживания границ участков таких синтезированных по частям голограмм. Простейшим методом для этого является выполнение условий неразрешения глазом объектов с угловым размером менее секунды. Другими словами, сами участки синтезируемой голограммы и промежутки между ними не должны превышать в угловой мере секунды, что при реальных расстояниях до голограммы порядка метра составляет линейный размер порядка десятой миллиметра. Голограммы с

такими линейными размерами вполне осуществимы, поскольку на этом размере укладываются до нескольких десятков периодов простой дифракционной решётки.

В экспериментах было замечено, что такие синтезированные голограммы обладают повышенным светорассеянием, что объясняется дифракцией света не только в нужном направлении, но и в направлении, определяющемся дифракцией на размере отдельных участков голографических решёток. Однако влияет недостаток не сильно на эмоциональное восприятие ортоскопических - висящих между голограммой и наблюдателем абстрактных изображений, основанных на простых геометрических фигурах, что позволяет надеяться, на такое же хорошее эмоциональное восприятие динамических изображений. Технически ЭТО обеспечить ортоскопических ОНЖОМ динамическим изменением периода решётки участков синтезированной голограммы, выполненной как акустооптический, или электрооптический элемент.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Шойдин С.А., Кондаков В.Ю. Дифракционная решетка и способ её изготовления. Патент РФ № 2242776 от 20.12.2004.
- 2. Шойдин С.А. Голографический бытовой осветительный прибор / Сб. материалов междунар. науч. конгр. «ГЕО-СИБИРЬ-2005». Новосибирск: СГГА, 2005. С. 57.

© С.А. Шойдин, 2010

УДК 623.4.052 А.А. Голицын НФ ИФП СО РАН «КТИПМ», Новосибирск

ТЕЛЕВИЗИОННЫЙ ПРИЦЕЛ ДЛЯ СТРЕЛКОВОГО ОРУЖИЯ С АВТОМАТИЧЕСКИМ ИЗМЕРИТЕЛЕМ ДАЛЬНОСТИ И БАЛЛИСТИЧЕСКИМ ВЫЧИСЛИТЕЛЕМ

Описывается макет телевизионного прицела со встроенным дальномером и баллистическим вычислителем.

A.A. Golitsyn

Novosibirsk Branch of the Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, "Technological Design Institute of Applied Microelectronics", Novosibirsk

TELEVISION SIGHT WITH EMBEDDED RANGEFINDER AND BALLISTIC COMPUTER FOR SMALL ARMS

Abstract: The precise and accurate range-to-target information is an essential variable in the fire control solution of most weapons. This information along with information about other firing conditions such as bullet and weapon type, current weather conditions including temperature, pressure and wind speed requires the shooter to know his trajectory all the way out to extreme long distance. This is why using sights combined with rangefinder and built-in ballistic computer makes shooting easier and more efficient.

Summary describes the prototype of sigh.

При решении задачи прицеливания одним из важнейших параметров является дальность до цели. Поэтому быстрое и точное определение дальности во многом определяет эффективность стрельбы из любого вида оружия.

В настоящей работе ставилась задача по разработке автоматизированного прицела—дальномера, обеспечивающего точное измерение дальности до цели, решение баллистической задачи (расчет угла прицеливания с учетом дальности, типа боеприпаса, температуры, атмосферного давления и скорости ветра) и автоматического отображения прицельного знака с учетом рассчитанного угла прицеливания. При этом необходимо было обеспечить выполнение жестких требований, предъявляемых к габаритам, массе, балансировке прицела, а также к удобству работы и наблюдения.

В тракт классического оптического прицела ввести управляемую прицельную марку трудно. Диапазон наблюдаемых яркостей не позволяет использовать легко управляемые светящиеся марки на базе ЖК, ЭЛТ или светодиодных матриц; просветные ЖК-панели недопустимо ухудшают качество

изображения, а подвижные просветные сетки на стекле снижают надежность системы, повышают массу и увеличивают объем изделия. Учитывая эти обстоятельства, было принято решение реализовать прицел базе телевизионной матрицы и микромонитора. За счет исключения оборачивающей системы, уменьшения фокусного расстояния по сравнению с оптикой, рассчитанной непосредственно на глаз, а также исключения узлов ввода прицельной марки в оптический тракт, весогабаритные характеристики получаются примерно в 1,5 раза меньше, чем у аналогичных оптических прицелов, что позволяет реализовать автоматический прицел-дальномер, который может использоваться на индивидуальном оружии, не ухудшая его баллистику. Дополнительные преимущества заключаются в быстрой отработке положения прицельной марки (доли секунды), смены типов прицельных марок и возможности вывода информации об условиях стрельбы.

Макет прицела реализован на базе телевизионной камеры, микромонитора и полупроводникового лазерного дальномера (см. рис.).

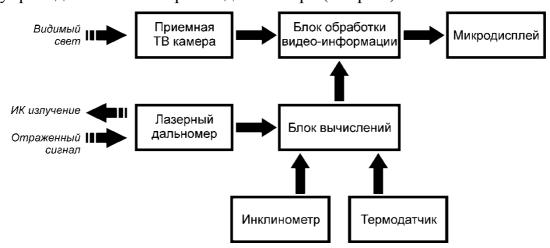


Рис. Структурная схема прибора

Изображение с ТВ-камеры в цифровом виде поступает на блок обработки изображения прицела, где происходит «склеивание» полученного изображения с изображением прицельной марки и служебной информации. Положение прицельной марки относительно изображения, полученного рассчитывается при измерении дальности до цели. Происходит это по следующему алгоритму. При нажатии на кнопку измерения дальности, запускается дальномер и измеряет дальность до цели. Через 0,7 с блок полученную вычислений считывает дальность И рассчитывает прицеливания с учетом таких параметров как температура, давление, скорость ветра, тип используемого патрона и тип оружия. Давление, значение скорости цели и ветра вводятся перед стрельбой вручную и при необходимости меняются при помощи специальных кнопок. Температура опционально может вводиться вручную или измеряться каждый раз при измерении дальности. При выключении прибора, все введенные параметры сохраняются и могут быть использованы в следующий раз.

Разработанный экспериментальный макет прицела-дальномера, сохраняя точность стрельбы, обладает массой 1,3 кг (вместе с кронштейном и

аккумулятором), полным набором функций по автоматическому измерению дальности, и решению баллистической задачи с учетом условий стрельбы. Время определения дальности до цели и расчета поправок для прицельного знака составляет не более 1 с, что позволяет оперативно выбирать цели, находящиеся на разном расстоянии, и производить по ним выстрелы. Высокая чувствительность используемой ТВ-камеры позволяет применять прицел как в 10^{-2} ЛК дневных, так И ночных условиях с освещенностью (чувствительность, обеспечиваемая современными приборами ночного видения).

© А.А. Голицын, 2010

УДК 004.922, 004.932 *А.М. Ковалев* КТИ НП СО РАН, Новосибирск

О ДИФРАКЦИОННОЙ ГЛУБИНЕ ФОКУСА НА СХЕМАТИЧЕСКИХ МОДЕЛЯХ ГЛАЗА

Рассмотрено распределение интенсивности вдоль зрительной оси глаза. Определены вероятные механизмы аккомодации глаза. Даны оценки глубины фокусной области и предельной частоты квантования пространства по глубине для мультифокальных дисплеев.

A.M. Kovalev

Technological Design Institute of Scientific Instrument Engineering (TDISIE) Siberian Branch, Russian Academy of Sciences, ul. Russkaya 41, Novosibirsk, 630058 Russia

ON DIFFRACTIVE DEPTH-OF-FOCUS IN SCHEMATIC EYE MODELS

The distribution of intensity along the visual axis of the eye is considered. The probable accommodation mechanisms are defined. The estimations of the depth-of-field, as well as limiting quantization frequencies of the depth-of-space for multi-focal displays are made.

Развитие трехмерного кино и телевидения, а также компьютерных систем объемной визуализации связано с использованием свойств бинокулярного зрения и стереопсиса. Надо заметить, что современные средства стереовидения Для левого и правого существенный недостаток. поставляются разные изображения, но лежат они на одной и той же плоскости. Отсутствие стимулов аккомодации и различной дефокусировки предметов на ухудшает когнитивные способности расстояниях Увеличиваются погрешности в оценке размеров и удаленности предметов. конвергенцией возникает конфликт, Между аккомодацией И усиливается на малых расстояниях. Появляется визуальный дискомфорт, утомление глаз, головная боль и т. д.

Начиная с 2000 г. прорабатывается идея построения мультифокальных стереодисплеев, содержащих множество планов-изображений (от 2 до 100), которые заполняют некий объем пространства (от 0.5 до 2 дптр) [1-6]. число Несмотря большое разработок, до сих пор отсутствует теоретическое обоснование выбора расстояний между планами. учитывающее физиологическую оптику глаза, также психофизику a аккомодации и визуального дискомфорта. В данной работе на основе Фурьеоптики и схематических моделей глаза определяется дифракционная глубина фокуса, глубина фокусной области глаза и предельная частота квантования пространства по глубине, позволяющая наблюдателю восстановить объемное изображение без визуального дискомфорта.

Используется три схематические модели глаза: 1) модель Гульстранда—Легранда с асферикой роговицы по Лотмару (1971) [7]; 2) модель Эскудеро—Санс и Наварро (1999) [8]; и 3) модель Давида Атчисона (2006) [8]. Модель Лотмара имеет одну асферическую поверхность и пригодна для работы в монохроматическом свете. В других моделях все поверхности асферические и определены хроматические дисперсии всех показателей преломления. В модели Атчисона применяется градиентное изменение показателя преломления хрусталика, как по радиусу, так и по толщине. В монохроматическом свете модель Лотмара имеет наибольшие суммарные аберрации (сферические, кому, высшего порядка), а модель Атчисона — наименьшие [8]. Величина аберраций зависит от диаметра a входного зрачка и уменьшается практически до нуля при a=2-3 мм.

Важнейшим элементом глаза является сетчатка [9]. У человека сетчатка имеет форму пластинки толщиной ~250 мкм и состоит из трех слоев тел нервных клеток. Слой задней поверхности содержит клеток на фоторецепторные элементы: И колбочки, которые являются палочки оптическими световодами и определяют дирекционный эффект Стайлса-Крауфорда (1933). Суть эффекта в том, что свет, проходящий вблизи центра зрачка, имеет больший визуальный отклик, чем свет, проходящий через периферийную зону зрачка. Эффект Стайлса-Крауфорда легко учитывается путем гауссовой аподизации входного зрачка глаза с помощью функции

$$f(a) = \exp[-\rho_e(a/2)^2],$$
 (1) где $\rho_e = 0.115 \text{ мм}^{-2} - \text{психофизическая константа, эквивалентная } \rho_{10} \approx 0.05$ [10].

Рис. 1

Расчет распределений интенсивности вдоль зрительной оси на основе Фурье-оптики выполнен с помощью программы оптического конструирования ZEMAX-EE фирмы Software, Inc. Focus Ha рис. показаны такие распределения для Лотмара при следующих модели ограничениях: 1) длина волны λ=550 нм, что соответствует самому низкому спектральной порогу чувствительности для фотопического (колбочкового, цветового) зрения; 2) аподизированного диаметр 2 изменяется OT ДО MM; 3) оптимизация фокусного расстояния выполняется (аккомодация)

соответствии с критерием минимума вариации волнового фронта, или

максимума отношения Штреля $S=\exp(-k^2\sigma^2)$, где $k=2\pi/\lambda$, σ – стандартное отклонение волнового фронта. Рассмотрим два случая: 1) a=2-3 мм, когда глаз почти не имеет аберраций; и 2) a>3 мм, когда с увеличением аберраций пиковая интенсивность PI (рис. 1) падает и удаляется от хрусталика.

В первом случае при круглом зрачке, униформном освещении и отсутствии аберраций волнового фронта аксиальная интенсивность в выходном зрачке может быть записана как

$$I = I_0 \operatorname{sinc}^2(\pi W_d/\lambda), \tag{2}$$

где W_d – дефокусировка, или оптическая разность хода в длинах волн [11]. Связь реального смещения фокуса δ с W_d следующая: δ =8 W_d nf $^2/a^2$, где δ – смещение в мкм, n = 1.336 – показатель преломления стекловидного тела глаза, f – переднее фокусное расстояние в мм. В диоптрийной мере смещение фокуса

$$\Delta = \delta/\mathrm{nf}^2 = 8\mathrm{W}_\mathrm{d}/a^2\,\mathrm{дптр} \tag{3}$$

При W_d = λ отрезок Δ_0 = $8\lambda/a^2$ можно назвать *глубиной фокусной области* (ГФО) глаза без аберраций (см. рис.1). Согласно первому правилу лорда Релея этот отрезок определяет две различимые наблюдателем вдоль оси световые точки и период наибольшей пространственной частоты по глубине.

Второе правило Релея (четверти волны) определяет $\partial u \phi p \alpha \kappa u u o n h y o c n y o u h y o k y c a (ДГФ). При <math>W_d = \pm \lambda/4$ из (3) $\Delta_D = \pm 2\lambda/a^2$, а ДГФ= $2|\Delta_D| = 4\lambda/a^2$. Таким образом, ГФО=2ДГФ. Подставим $W_d = \lambda/4$ в (2) и получим $I = I_0 \sin c^2(\pi/4) = 0.81 I_0$. Это означает, что на границах ДГФ интенсивность уменьшается на 19%, а изображение точки остается практически «эйриподобным».

Модель Лотмара дифракционно-ограничена при зрачках $a \le 3.5$ мм. При больших зрачках пиковая интенсивность PI падает ниже 81% и удаляется от фокуса, определенного по минимуму стандартного отклонения волнового фронта σ_{min} . В 1986 г. Филлип Петерсон и Джозеф Джири теоретически и экспериментально показали, что пиковая интенсивность PI при любых аберрациях определяет местоположение лучшей плоскости изображений [12]. Лучшей в том смысле, что в этой плоскости изображение световой точки (например, звезды) подобно пятну рассеяния Эйри. Как найти эту плоскость?

Возможны варианта. Во-первых, для оптимизации два (аккомодации) **ZEMAX** онжом оператор расстояния В использовать концентрации энергии DENF - Diffraction encircled energy (fraction). Этот оператор вычисляет долю энергии дифракционного пятна в кружке заданного радиуса r_f . В нашем случае, $r_f = 0.5$ мкм при нулевом отклонении центра кружка от оси. Глобальный максимум DENF соответствует пику интенсивности PI.

Во-вторых, можно использовать пространственно—частотный принцип. Заметим, что психофизики нашли в зрительной системе дискретные, независимые нейроны (или каналы), каждый из которых «настроен» на определенный, но ограниченный интервал пространственных частот, чувствительность к которому у него максимальна. Найдено 6 каналов с основными частотами: 0.75, 1.5, 2.8, 4.4, 8 и 16 цикл/градус [13]. Ширина канала 1.5-2 октавы, т.е. каналы перекрываются. Следовательно, можно сказать, что, в известном смысле, на определенном уровне зрительной системы выполняется Фурье-преобразование пространственных частот, содержащихся в

визуальном стимуле, или определяются компоненты Фурье его паттерна. Поэтому второй механизм фокусировки — это оптимизация по параметру МТFA на частоте 16 цикл/град. При оптимизации фокуса по параметру DENF или МТFA исправляется МТF, достигается точка PI, увеличивается число Штреля, а PSF приближается к распределению Эйри. Для зрачков a=4-6 мм величина радиуса пятна до первого минимума интенсивности составляет ~3 мкм, что дает остроту зрения на уровне 1,6. Так как при малых зрачках положение PI и σ_{min} совпадают, оптимизация фокусного расстояния по пространственно—частотному принципу может быть общим механизмом аккомодации при любых зрачках.

Глубина фокуса определялась на трёх моделях глаза на длине волны 550 нм. Диаметр аподизированного зрачка изменялся от 2 до 6 мм. Оптимизация фокусного расстояния выполнялась по критерию МТFA_{max} на частоте 16 цикл/град. Дифракционная глубина фокуса ДГФ в дптр рассчитывалась по кривой DENF на уровне 80% от пиковой интенсивности PI. Посчитана глубина фокусной области ГФО (путем удвоения ДГФ), а также среднее значение и стандарное отклонение ГФО для трёх моделей.

Полученные результаты и экспериментальные данные офтальмологов показаны на рис. 2. Нетрудно видеть, что ДГФ всех трех моделей в диапазоне зрачков от 2 до 4 мм практически совпадают с ДГФ для глаза без аберраций. С ростом аберраций ДГФ увеличивается, особенно для модели Лотмара. График среднего значения ГФО можно сравнить с данными Кэмпбелла (субъективный эксперимент), приведенными в [14], и с данными Наварро (объективный эксперимент на длине волны λ =543 нм) [15]. Можно заметить хорошее совпадение среднего ГФО с объективными данными Наварро в области зрачков 3.5-6 мм и с субъективными данными Кэмпбелла – в области 2-3 мм.

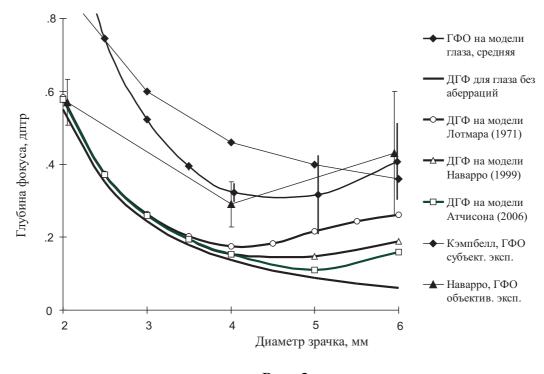


Рис. 2

Как отмечалось выше, глубина фокусной области ГФО определяет которую пространственную частоту сигнала, наблюдатель. Чтобы объемный дисплей смог воспроизвести такой сигнал, согласно теореме Котельникова-Шеннона потребуется вдвое большая частота дискретизации. Таким образом, планы-изображения необходимо разносить на расстояния, соответствующие дифракционной глубине фокуса ДГФ. Чтобы восстановить сигнал после фильтрации и дискретизации, интерполяция и фиксация глазом изображений между соседними планами с учетом аксиальной интенсивности. При этом будет гарантировано и качество изображения в промежутке между планами, и визуальный комфорт восприятия.

В заключении следует отметить, что оптимизация фокусного расстояния по пространственно-частотному принципу является одним из вероятных механизмов аккомодации. Лучшее качество изображений и отсутствие дискомфорта достигается, если расстояние между планами не превышает дифракционной глубины фокуса. Для типовых зрачков диаметром 3-4 мм это расстояние равно 0.25-0.16 дптр.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Sullivan A. A Solid-state Multi-planar Volumetric Display // Proc. SPIE. 2004. 5291. P. 279.
- 2. Kompanets I., Gonchukov S. 3-D medium based displays // Proc. SPIE. 2005. 5821. P.134-145.
- 3. Rolland J.P., Krueger M.W., Goon A. Multifocal planes head-mounted displays // Applied Optics. 2000. 39, No.19. P.3209-3215.
- 4. Akeley K., Watt S.J., Girshick A.R., Bancks M.S. A stereo display prototype with multiple focal distancis // ACM Trans. Graph. 2004. 23, No.3. P.804-813.
- 5. Love G.D., Hoffman D.M., Hands P.J., Gao J., Kirby A.K., Bancks M.S. High-speed switchable lens enables the development of a volumetric stereoscopic display// Optics Express. 2009. 17, No.18. P.15716-15725.
- 6. Liu S., Hua H. Time-multiplexed dual-focal plane head-mounted display with a liquid lens // Optics Letters. 2009. 34, No.11. P.1642-1644.
- 7. Lotmar W. Theoretical Eye Model with Aspherics // JOSA. 1971. 61, No.11. P.1522-1529.
- 8. Bakaraju R.C., Ehrmann K., Papas E., Ho A. Finite schematic eye models and their accuracy to in-vivo data // Vision Research. 2008. 48. P.1681-1694.
- 9. Липкин В.М. Зрительная система. Механизмы передачи и усиления зрительного сигнала в сетчатке глаза // Соросовский образовательный журнал. 2001. **7**, №9. С.2-8.
- 10. Applegate R.A., Lakshminarayanan V. Parametric representation of Stiles-Crawford functions: normal variation of peak location and directionality // JOSA. 1993. 10. No.7. P.1611-1623.
- 11. Geary J.M. Introduction to lens design: with practical ZEMAX® examples // Willmann-Bell, Inc. 2002.
- 12. Peterson P., Geary J.M. Intermediate spherical aberration // Optical Engineering. 1986. 25, No.11. P.1232-1240.

- 13. Бондаренко В.М. и др. Пространственное зрение. СПб.: Наука, 1999.
- 14. Сергиенко Н.М. Офтальмологическая оптика // Медицина. М. 1991.
- 15. Marcos S., Moreno E., Navarro R. The depth-of-field of the human eye from objective and subjective measuments // Vision Research. 1999. 39. P.2039-2049.

© А.М. Ковалев, 2010

УДК 621.383.8 В.Н. Федоринин, А.Г. Паулиш НФ ИФП СО РАН «КТИПМ», Новосибирск

ПОЛЯРИЗАЦИОННО-ОПТИЧЕСКИЕ ПРИБОРЫ ДЛЯ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ВЕЛИЧИН

В работе представлены результаты разработок поляризационно-оптических устройств для измерения физических величин, таких как интенсивность электромагнитного излучения с пространственным разрешением, спектра акустических колебаний, величины перемещения, типов и кинетики химических реакций.

V.N. Fedorinin, A.G. Paulish

Novosibirsk Branch of the Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, "Technological Design Institute of Applied Microelectronics", Novosibirsk

POLARIZATION-OPTICAL DEVICES FOR THE MEASUREMENTS OF PHYSICAL MAGNITUDES

The development of optoelectronic devices for measurement of physical magnitudes, such as electromagnetic radiation intensity with spatial resolution, acoustic signal spectrum, magnitudes of displacement, chemical reaction types and kinetics are presented.

В работе представлены результаты разработок поляризационно-оптических устройств для измерения физических величин, таких как интенсивность электромагнитного излучения с пространственным разрешением, спектр акустических колебаний, величина перемещения, тип и кинетика химических реакций.

Принцип работы указанных поляризационно-оптических устройств на способности света изменять состояние поляризации при взаимодействии с физическим объектом при изменении механических и химических свойств последнего. Детектор электромагнитного излучения основан на матрице термопневматических преобразователей, в которых энергия излучения преобразуется в деформацию упругой мембраны. Деформация поляризационно-оптическим мембраны регистрируется использованием пластины Савара, светодиода видимого диапазона и КМОПкамеры. Чувствительность оптической схемы к перемещению мембраны составляет менее 1 нм. На основе такой матрицы разработан неохлаждаемый детектор инфракрапсного излучения (рис. 1).

Оптическая система считывания использована для анализа спектра акустических колебаний. Анализатор состоит из набора микрострун разной длины и диаметра с различной резонансной частотой в диапазоне 0,1 — 20 кГц. Ширина резонансной линии составляет 5 Гц, что близко к разрешающей способности человеческого уха. Разработаны оптическая схема считывания амплитуды колебаний микрострун на основе КМОП-камеры и методика определения спектра акустических колебаний.

Фотоупругий эффект использован для разработки высокочувствительных тензометрических датчиков и датчиков линейных перемещений (рис. 2). Такие датчики используются для измерений статических и динамических нагрузок в различных металлических и железобетонных конструкциях. Определение деформаций горных породах трех направлениях посредством В поляризационно-чувствительных датчиков, сдвинутых относительно друг друга на 120°, позволят проводить непрерывный контроль формы и напряжений в горных породах, несущих конструкциях при взрывных работах, землетрясениях и опасных техногенных работах.

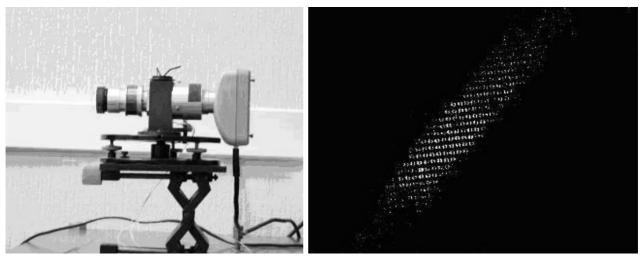


Рис. 1. Неохлаждаемый детектор инфракрасного излучения на основе термопневматических преобразователей (слева) и изображение объекта, нагретого до 200 °C (справа)

Рис. 2. Восьмиканальная тензометричесая станция с поляризационнооптическими датчиками напряжений различных конструкций

Свойство электромагнитной волны изменять состояние поляризации при отражении от границы раздела двух сред было использовано для разработки

датчиков физико-химических параметров жидких, газовых и биологических сред. Разработаны конструкции портативных поляризационно-оптических рефрактометров и газовых сенсоров (рис. 3). На базе поляризационного датчика создан ДНК-сенсор для анализа вирусов опасных заболеваний (рис. 4).

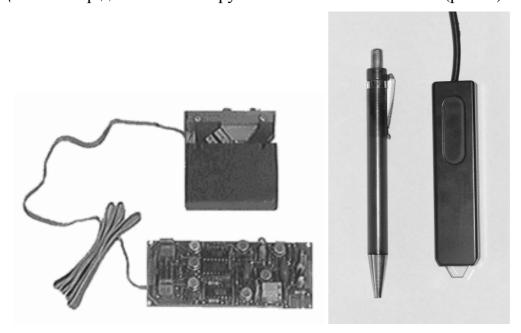


Рис. 3. Поляризационно-оптические рефрактометры: проточный (слева) и контактный (справа)

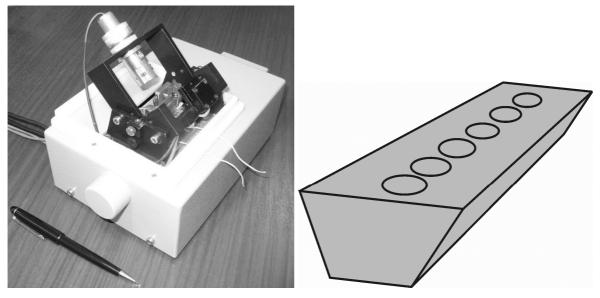


Рис. 4. ДНК-сенсор (слева) и схема ДНК чипа с пробами для анализа (справа)

Главные преимущества указанных поляризационно-оптических датчиков заключается в использовании некогерентного источника света (светодиода) и отсутствии необходимости разработки специализированных мультиплексных систем считывания, так как для передачи света не требуются провода. В результате, устройства являются компактными, недорогими, с малым энергопотреблением и построены на едином принципе.

УДК 681.17.18 В.П. Корольков, Р.В. Шиманский, Р.К. Насыров Институт автоматики и электрометрии СО РАН, Новосибирск А.С. Конченко Новосибирский государственный университет, Новосибирск

ОПТИЧЕСКИЙ ПРОФИЛОМЕТР НА БАЗЕ МИКРОИНТЕРФЕРОМЕТРА МИИ-4 И ЕГО КАЛИБРОВКА

Статья описывает результаты разработки оптического профилометра на базе микроскопа-интерферометра МИИ-4. Разработанный прибор имеет диапазон измерения +-100 микрометров с разрешением 5 нм. Предложен альтернативный метод измерения глубины бинарных решеток для калибровки профилометра. Он основан на измерении спектральной зависимости дифракционной эффективности в нулевом порядке дифракции на отражение.

V.P. Korolkov, R.V. Shimansky, R.K. Nasyrov Institute of Automation and electrometry SB RAS A.S. Konchenko Novosibirsk State University

OPTICAL PROFILOMETER ON THE BASE OF MICROINTERFEROMETER MII-4 AND ITS CALIBRATION

The paper describes the results of development of optical profilometer on the base of microscope-interferometer MII-4. Developed device has measurement range of up to +-100 micron with resolution of 5 nm. Alternative method for measurement of profile depth of binary gratings used for calibration of profilometers has been offered. It is based on measurement of spectral dependence of diffraction efficiency in zero order in reflection.

Внедрение современных технологий микрообработки в производство требует контролировать точность формирования микрорельефа на различных этапах технологического процесса. Однако профилометры с нанометровым разрешением весьма сложны и дороги для применения в цехах или в учебном процессе. В России серийно выпускаются только два профилометрических прибора - контактный профилометр АБРИС-ПМ7, предназначенный машиностроительных задач, и микроинтерферометр МИИ-4, выпускаемый ЛОМО (Санкт-Петербург) несколько десятков лет. Последний прибор морально устарел, так как не снабжается видеокамерой и средствами компьютерной обработки результатов измерения. Данный прибор может быть относительно легко модернизирован путем установки цифровой камеры вместо окуляра и автоматизации процесса регистрации компьютерной обработки

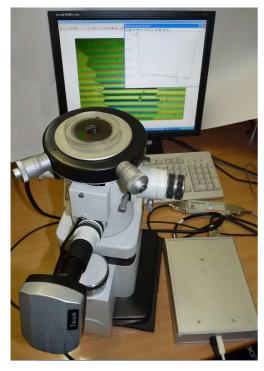


Рис. 1. Модернизированный МИИ-4M с латчиком перемешения

Однако интерферограмм. практика использования микроскопа, модернизированного таким образом, нежелательность показала механического переключения спектральных фильтров. Поэтому мы разработали программно-аппаратный модернизации комплект ДЛЯ стандартного МИИ-4 с программным управлением источниками освещения минимальными изменениями конструкции¹. базовой Вместо лампового штатного осветителя устанавливается осветитель на двух квазимонохроматическом) сверхярких светодиодах. Необходимое освещение может быть выбрано с электронного блока помощью управления, подключаемого

непосредственно к компьютеру по USB-порту. Для получения изображения на место окуляра устанавливается цветная цифровая USB-камера. Профилограмма строится на основе отслеживания ахроматической полосы и определения количества пикселов в периоде квазимонохроматической интерферограммы в заданном секторе кадра. Диапазон измерения составляет ±2 мкм с нанометровым разрешением.

Для пользователей, нуждающихся в более широком диапазоне, в оптический блок интерферометра встраивается датчик линейного перемещения объектива микроскопа с выводом информации по USB-порту. Наличие этого датчика и соответствующих опций в программном обеспечении позволяет реализовать многофокусный режим измерения глубины с диапазоном не менее ±100 мкм и разрешением 5 нм. Рис. 2 демонстрирует пример измерения толщины пленки толщиной 42 мкм наклеенной на стеклянную подложку.

Калибровка прибора. Важным вопросом применения профилометров является обеспечение точности измерений. В этой связи нам необходимо учитывать, что микроинтерферометру Линника свойственна систематическая ошибка, возникающая из-за того что период полос не равен половине длины волны². Для объектива с апертурой 0.5-0.7 период полос может быть на 2-15% больше чем половина длины волны. Типичный путь решения данной проблемы - калибровка по сертифицированному стандарту глубины. Однако стоимость таких структур сравнима со стоимостью нашего комплекта для модернизации МИИ-4 в минимальной конфигурации. Поэтому мы снабжаем наш прибор калибровочными бинарными решетками собственного изготовления, сертифицируемыми по разработанной нами новой методике. Достоинством, которой является то, что пользователь достаточно легко может проверить наши данные, используя практически любой современный спектрофотометр.

способ сертификации Предлагаемый основан на использовании спектральных свойств бинарных решеток с глубиной в несколько длин волн. При изменении волнового числа падающего на решетку света интенсивность нулевого отраженного порядка дифракции изменяется циклически (рис. 3). Зная положение максимумов интенсивности в спектре, измеренном на можно определить глубину решетки следующим Оптическую разность хода Δl лучей, отраженных от поверхности выступов и канавок, можно выразить через высоту профиля решетки Н и угол падения света α по формуле $\Delta l = 2H/\cos(\alpha)$. Тогда интенсивность отраженного света в нулевом порядке дифракции будет иметь локальные максимумы при волновых $k_m=1/\lambda_m$ числах падающего света, удовлетворяющих равенству $k_m = m \cdot \cos(\alpha)/2H$, где m - количество длин волн λ_m , укладывающихся в разности оптических путей. Вычисляя разности волновых чисел соседних максимумов, можно определить глубину рельефа как $H = \cos(\alpha)/2(k_{m+1}-k_m)$. Усреднение по нескольким парам максимумов повышает точность определения глубины.

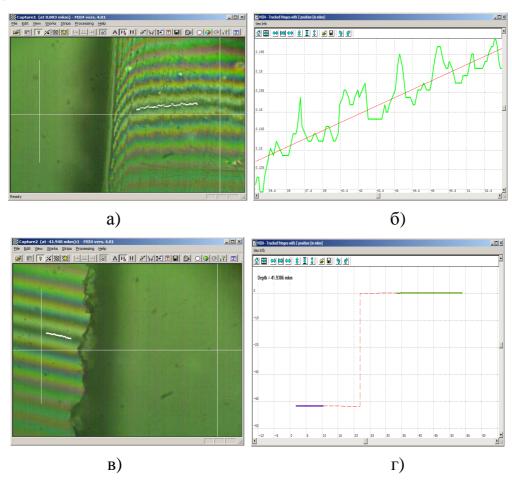


Рис. 2. Измерение глубокого рельефа:

а и б – соответственно, отслеживание интерферограммы в первом фокусе и профиль построенный по ней; в – отслеживание интерферограммы во втором фокусе; г – профилограмма полученная объединением результатов отслеживания ахроматической полосы по двух интерферограмм

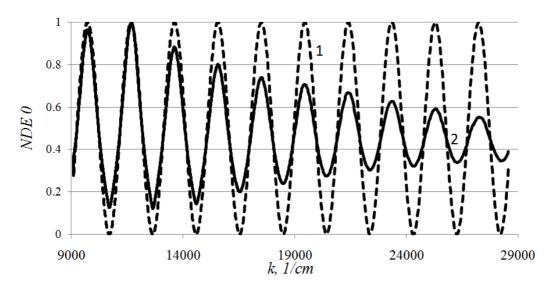


Рис. 3. Спектральная зависимость нормализованной (на максимум) дифракционной эффективности NDE0 в нулевом порядке отражательной решетки:

1 – расчетный спектр для решетки глубиной 2.543 мкм при угле падения 8° . 2 – экспериментально измеренный спектр для тестовой решетки с периодом 20 мкм

штрихов Влияние наклона решетки. Было проведено стенок моделирование дифракционной эффективности отражательной решетки с периодом 10 мкм и глубиной 2.4 мкм в нулевом порядке дифракции (рис. 4). Угол наклона боковых сторон штрихов изменялся от 90 до 50 градусов. При углах, больших 70° максимальная погрешность измерения глубины составляет не более 0.5% и является приемлемой. Но при угле 60° погрешность достигает 1.5%. Таким образом, изотропное жидкостное и плазмохимическое травление может использоваться калибровочных не ДЛЯ изготовления решеток, измеряемых предлагаемым методом.

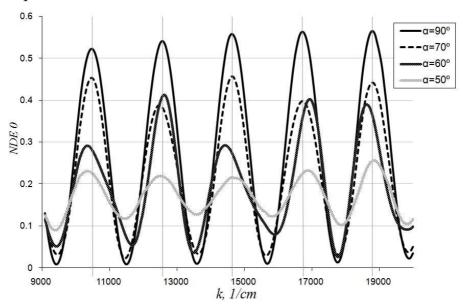


Рис. 4. Расчетная спектральная зависимость дифракционной эффективности NDE0 в нулевом порядке отражательной решетки при различных углах наклона стенок канавок решетки с глубиной 2.4 мкм и периодом 10 мкм

ошибок Влияние Для спектрофотометра. спектрофотометров простого экономичного уровня типа UNICO 2800 установки ошибка длины волны достигает 0.8 нм в диапазоне 200-1100 нм. Но даже при такой ошибке вклад спектрофотометра В погрешность измерения не превысит 0.4%. использовании спектрофотометра более высокого класса эта погрешность может снизиться до 0.1%.

Тестирование метода. Для проведения экспериментов использовался одноканальный спектрофотометр UNICO-2800, в который была установлена система зеркал (рис. 5).

Угол наклона падающего на образец света был равен 8° . Погрешность определения угла составила 0.5° , и соответственно, вклад

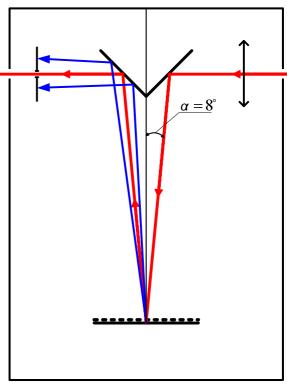


Рис. 5. Схема измерения спектра отражения на спектрофотометре UNICO-2800

этой ошибки в итоговый результат составил около 0.13%.

Угол наклона стенок канавок тестируемой решетки составлял не менее 80 градусов. Измеренный нормализованный спектр отражения решетки с выделением первого порядка показан на рис. 3 (график 2). Падение диапазона модуляции с увеличением волнового числа объясняется уменьшением угла дифракции и попадания части световых потоков +1 и -1 порядков в окно диафрагмы.

Рассчитанное по предлагаемому методу значение глубины изготовленной нами тестовой решетки составило $2.543\,$ мкм при среднеквадратичном отклонением от этой величины 1.9нм. Измерение этой же решетки на модернизированном МИИ-4 дало значение глубины $2.499\,$ мкм с воспроизводимостью $\pm 7\,$ нм.

Заключение. Представлены результаты модернизации микроинтерферометра МИИ-4, позволяющей расширить диапазон измерения +100Разработан глубины микрорельефа мкм. до спектрофотометрический метод измерения глубины бинарных отражающих решеток удобный выпуска недорогих калибровочных ДЛЯ необходимых для поверки профилометров.

Общий бюджет ошибок предложенного метода состоит из двух основных компонент — смещения максимумов спектра из-за наклона стенок штрихов решетки и ошибки задания длины волны спектрофотометра. В итоге суммарная погрешность метода не превышает 1%.

Представленный метод применим для решеток с диапазоном глубин от 400нм до 10мкм при отношении глубины к периоду на уровне 1:5 - 1:10, где ограничение снизу вызвано минимальной длиной волны спектрофотометра, а сверху определяется технологией изготовления решеток. При измерениях в диапазоне длин волн от 300 нм до 1 мкм, период решетки не должен превышать 25 мкм, что вызвано необходимостью разделения порядков дифракции в спектрофотометре.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. В.П. Корольков, С. Остапенко, Р.В. Шиманский, Д.Э. Денк. «Оптические микропрофилометры для контроля дифракционного микрорельефа». Сборник трудов 4-го международного форума "Голография ЭКСПО -2007" (25-27 сентября 2007 г., Москва), с. 89–92.
- 2. K. Creath «Calibration of numerical aperture effects in interferometric microscope objectives", Appl. Opt., Vol. 28, No. 15, 1989, pp. 3333–3338.
 - © В.П. Корольков, А.С. Конченко, Р.В. Шиманский, Р.К. Насыров, 2010

УДК 621.365.2 *Н.Р. Рахимов, О.К. Ушаков, Б.Н. Рахимов* СГГА, Новосибирск

ДВУМЕРНЫЙ КООРДИНАТНО-ЧУВСТВИТЕЛЬНЫЙ ПРИЕМНИК ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ НА ОСНОВЕ ПЛЕНОК С АНОМАЛЬНЫМ ФОТОНАПРЯЖЕНИЕМ

В данной работе рассматриваются принципы построения, конструкция и технология изготовления в лабораторных условиях двумерно координатночувствительных автономных приемников оптического излучения (ПОИ) на основе тонких пленок из полупроводниковых соединений CdSe и CdTe:Ag. Такие приемники генерируют аномально высокие фотонапряжения (АФН) и могут использоваться в качестве автономных ПОИ для определения координат источника светового излучения в оптоэлектронных и робототехнических устройствах.

N.R. Rakhimov, O.K. Ushakov, B.N. Rakhimov SSGA, Novosibirsk

TWO-DIMENSIONAL COORDINATE-SENSITIVE OPTICAL RECEIVER ON THE BASIS OF ANOMALOUS PHOTOVOLTAGE FILM

The paper deals with the principles of designing as well as the construction and technology of making (on the laboratory scale) two-dimensional coordinate-sensitive autonomous optical receivers on the basis of the thin films of semiconductor compounds CdSe and CdTe:Ag. The receivers generate abnormally high photovoltage and may be used as autonomous optical receivers to determine the light source coordinates in optoelectronic devices and robots.

Известно [1, 2], что пленки, обладающие аномальным фотонапряжением (АФН), представляют собой функциональный преобразователь, трансформирующий световой поток интенсивности Φ_0 в аномально большое фотонапряжение $V_{a\phi H}$.

Это объясняется тем, что фотоэдс (или фотонапряжение) в полупроводниках независимо от ее природы не может превышать ширину запрещенной зоны, т.е. несколько вольт [1]. Например, в однородном полупроводнике демберовское (диффузионное) фотонапряжение для сколь угодно большой интенсивности возбуждающего света не превышает значения:

$$V = \frac{kT}{q} \ln \frac{n_1}{n_0} << \frac{kT}{q} \ln \frac{N_c}{n_0} = E_q,$$
 (1)

здесь E_q - ширина запрещенной зоны полупроводника; n_1 и n_0 - соответственно неравновесная и равновесная концентрация носителей; N_c - плотность состояний.

Другим примером может служить фотонапряжение, возникающее при освещении p-n- перехода [2].

$$V \le \frac{kT}{q} \ln \frac{n_n p_p}{n_0^2} = E_{Fn} - E_{Fp}, \tag{2}$$

которое также не превышает E_q . Здесь n_n и p_p - соответственно концентрации электронов в n-области и дырок в p-области, E_{Fn} и E_{Fp} - энергии уровня Ферми в n- и p- областях.

До последнего времени исключение из этого правила составляли лишь полупроводниковые текстуры, в которых наблюдается эффект аномально больших фотонапряжений (АФН-эффект), обусловленный сложением элементарных фотоэдс Дембера (1) или элементарных фото э.д.с. (2), развивающихся на отдельных p-n-переходах текстуры [4].

В зависимости от функциональных возможностей ПОИ подразделяют на амплитудные (интегральные), реагирующие только на величину среднего значения освещенности их фоточувствительной поверхности, и координатно-чувствительные (информационные), реагирующие на пространственное распределение оптического сигнала. Координатно-чувствительные ПОИ в свою очередь подразделяются на селективно-преобразовательные, позиционно-чувствительные [5] и двумерные координатно-чувствительные.

Двумерный координатно-чувствительный ПОИ относится к наиболее универсальным, так как позволяет преобразовывать в электрический сигнал всю информацию о пространственном распределении интенсивности оптического сигнала. Большинство двумерных координатно-чувствительных ПОИ используют принцип прибора с зарядовой связью (ПЗС). В настоящей работе получен двумерный координатно-чувствительный автономный приемник оптического излучения, из полупроводниковых соединений в виде двумерной (по координатам X и Y) ступенчатообразной АФН-пленки с постепенным увеличением толщины ступенек по оси X, с продолжением увеличения на каждой следующей ступеньке по оси Y или наоборот.

Для получения пленок различной толщины используется вакуумная установка ВУП-2к. В рабочей камере вакуум достигает порядка $10^{-4}...10^{-5}$ мм рт. ст., температура подложки $310...480^{\circ}$ С, подложку располагают под углом 45° к направлению молекулярного пучка.

В качестве подложек используется стекло толщиной 2 мм Подготовленные подложки помещаются в специальный держатель и на поверхность подложки устанавливается двухстворчатая маска из изоляционного материала (гетинакс). В рабочую камеру устанавливаются идентичные микроэлектродвигатели (2 об/мин), для открытия или закрытия поверхности подложки путем взаимно перпендикулярного перемещения соответствующих шторок. Открытие

поверхности подложки осуществляется электродвигателями при помощи лёгких термостойких тросиков, связанных со шторками. Вращением двигателей постепенно открывается поверхность подложки. Плёнки, полученные на подложке с размером 20×20 мм², двумерно ступенчатообразны по осям X и Y. Толщина каждой ступеньки определяется при помощи интерференционного микроскопа МИ-4.

На рис. 1 приведены изображения АФН-плёнки. Падающий поток света Φ_0 генерирует фотонапряжение АФН. При перемещении позиции монохроматического излучения от ступеньки с толщиной пленки 1 мкм до ступеньки с толщиной пленки 2,5 мкм, пропорционально уменьшается генерируемое фотонапряжение $V_{\rm AФH}$.

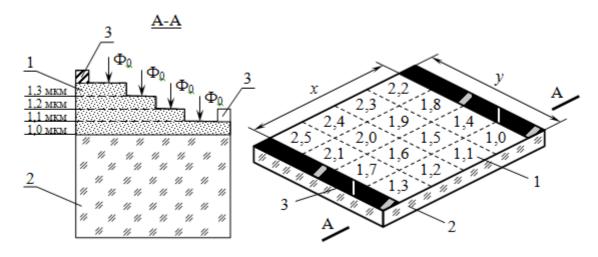


Рис. 1. Двумерная ступенчатообразная фоточувствительная АФН-пленка:

1 – двумерный ступенчатообразный фоточувствительный слой из кристаллического теллурида кадмия;
 2 – стеклянная подложка;
 3 – металлические контакты;
 ФО – поток падающего направленного монохроматического излучения

Применение технологий и конструктивных решений, предложенных нами работе [6], при изготовлении двумерно координатно-чувствительного ПОИ позволяет получить эффективные характеристики последнего.

работе приведены данной изложена методика И результаты экспериментального исследования получения эффективного координатнополупроводниковых чувствительного ПОИ ИЗ соединений виде ступенчатообразной АФН-пленки с постепенным увеличением толшины ступенек, начиная с ≈1 мкм.

Для получения пленок различной толщины использована вакуумная установка ВУП-2к. В рабочей камере вакуум достигал порядка $10^{-4}-10^{-5}$ мм.рт.ст., температура подложки $310-480^{\circ}\mathrm{C}$, подложку располагают под углом 45° к направлению молекулярного пучка.

В качестве подложек использовалось стекло толщиной 2 мм. Подготовленные подложки помещались в специальный держатель и на поверхность подложки устанавливалась маска из изоляционного материала (гетинакс). В рабочую камеру устанавливался микроэлектродвигатель 2 об/мин,

для открытия или закрытия поверхности подложки. Открытие поверхности подложки осуществляется электродвигателем при помощи лёгкого термического шнурка, связанного с маской. При вращении двигателя постепенно открывается поверхность подложки. Плёнки, полученные на подложке с размером 2х20 мм², ступенчатообразны. Толщина каждой ступени определялась при помощи интерференционного микроскопа МИ-4.

координатно-чувствительных фотогенераторах на основе теллурида кадмия можно разработать двумерно координатно-чувствительный автономный приёмник оптического излучения. Входной сигнал содержит информацию о направлении и величине смещения излучающего объекта. На ступенчато-образного полученного АФН-плёнку основании ПО способу координатно-чувствительного фотогенератора, получения изготовлен координатно-чувствительный автономный приёмник оптического излучения.

Основные параметры двумерно координатно-чувствительного ПОИ на основе AФH-пленки из CdTe:

Чувствительность, В/мм, при освещенности 10 лк 2-5

Внутреннее сопротивление, Ом 10^{12} - 10^{14}

Постоянная времени, с 0,8-1,0 Спектр излучения, мкм 0,5-0,83 Чувствительная область, мм 2×15

 Γ абариты, мм $2 \times 20 \times 20$

Масса, г, не более 3,0

Данный прибор можно использовать в качестве автономного ПОИ для определения координат источника светового излучения в оптоэлектронных и робототехнических устройствах.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Рахимов Н.Р., Серьёзнов А.Н. АФН-пленки и их применение / монография. Новосибирск: СибНИА, 2005. 64 с.
- 2. Рахимов Н.Р., Мамадалиева Л.К. // Изв. вузов. Приборостроение. 2004. Т. 47. № 8. С. 53-56.
- 3. Рахимов Н.Р., Касымахунова А.М., Усманов Ш.Ю. Способ получения фотогенераторов / Патент РУз IAP 02610 от 25.02.2003 г.
- 4. Фотоэлектрические явления в полупроводниках и оптоэлектроники / Под ред. Э.И. Адировича // Ташкент. «ФАН». 1972. С. 177.
- 5. Пат. 2246779 РФ. Координатно-чувствительный приемник оптического излучения / Н.Р. Рахимов; А.Н. Серьезнов // Б.И. 2005. №2.
- 6. Пат. №2005113383\28(015413) от 18.01.09. РФ. Двумерный координатно-чувствительный приемник оптического излучения / Н.Р. Рахимов; А.Н. Серьезнов; М.П. Петров // Б.И. 2009. № 2.

УДК 681.327.68:778.38

Е.Ф. Пен

Институт автоматики и электрометрии СО РАН, Новосибирск

Р.М. Русаков

Новосибирский государственный технический университет, Новосибирск

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ СТАТИСТИЧЕСКИХ ХАРАКТЕРИСТИК ИЗОБРАЖЕНИЙ СТРАНИЦ ДАННЫХ В ГОЛОГРАФИЧЕСКОЙ ПАМЯТИ

Исследованы статистические характеристики восстановленных изображений страниц данных в голографической памяти, определяющие практически достижимые значения плотности записи и вероятности ошибки считывания. Описана методика получения указанных характеристик с помощью высокоразрешающей ПЗС-камеры, приведены результатов экспериментов и расчетов.

E.F. Pen
Institute of Automation and Electrometry SB of RAS, Novosibirsk
R.M. Rusakov
Novosibirsk State Technical University, Novosibirsk

EXPERIMENTAL STUDY OF STATISTICAL CHARACTERISTICS OF IMAGES OF DATA PAGES IN HOLOGRAPHIC MEMORY

Statistical characteristics of the reconstructed images of data pages in holographic memory investigated. They determine practically achievable values of recording density and bit error rate. We describe a technique to obtain these characteristics by using high-resolution CCD cameras, presents the results of experiments and calculations.

Актуальность исследований свойств восстановленных изображений страниц данных в голографической памяти обусловлена тем, статистические характеристики этих изображений $\overline{P^{1,0}}$, $\sqrt{D[P^{1,0}]}$, $\sigma'_{1,0} = \sqrt{D[P^{1,0}]}/\overline{P^{1,0}}$ — средние значения, дисперсии, коэффициенты вариации мощностей изображений «1» и «0», а также их контраст $K = \overline{P^1}/\overline{P^0}$, связаны с геометрическими и информационными параметрами голографической памяти и позволяют получить оценки практически достижимых значений плотности записи и вероятности ошибки считывания (bit error rate — BER), которые часто проводят в предположении нормального распределения плотности вероятности мощностей изображений «1» и «0»:

Методика получения статистических характеристик изображений. Для статистической обработки использованы десятков несколько изображений страниц данных размером восстановленных 32х32 бит, экспериментальных полученных при исследованиях устройств голографической памяти. В качестве иллюстраций на рис. 1а – 1в. приведены наиболее характерные фрагменты этих изображений. Видно, что наряду с яркими высококонтрастными изображениями (а) имеют место изображения с малым контрастом и большим разбросом интенсивностей изображений информационных элементов «1» и «0» (б - в). Значительные отличия этих изображений обусловлены множеством факторов, главными из которых являются дифракционные помехи из-за ограниченных размеров Фурьеголограмм, несовершенства регистрирующей среды (нелинейность отклика, шумы рассеяния), неоптимальные режимы записи голограмм.

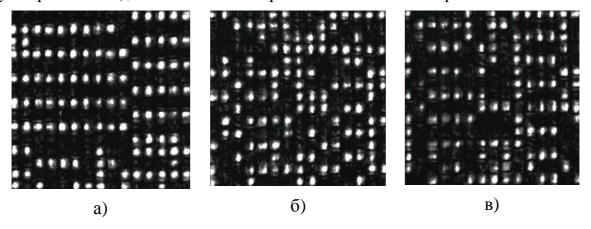


Рис. 1. Пример восстановленных изображений страниц данных

Регистрация восстановленных изображений проводилась с помощью ПЗС-камеры, имеющей 2048х1536 фотоприемников с динамическим диапазоном 1:1300 и размерами 3.45х3.45 мкм каждый. Для снижения влияния погрешностей юстировки и усреднения фотоотклика изображение каждого двоичного элемента «1» или «0» детектировалось массивом 60х60 приемников.

Полученное и переданное в компьютер изображение обрабатывалось с помощью специально разработанной программы и пакета MathCAD. Вначале проводилась выборка лишь тех участков восстановленного изображения, которые несут информацию непосредственно об элементах «1» и «0», и игнорируется информация о промежутках. Кроме того, проводилось усреднение всех значений интенсивностей отсчетов исходного изображения (рис. 2а), попадающих в область детектирования («окна») отдельного элемента «1» или «0».

В результате работы программы формируется новое изображение страницы данных (рис. 2б), представленное в виде матрицы, в которой каждый элемент матрицы означает усреднённое по площади значение интенсивности

информационного элемента страницы данных. Далее для каждого изображения страницы данных проводится построение гистограмм распределений мощностей изображений «1» или «0» (рис. 2в).

В ходе проведения экспериментов был определен оптимальный размер «окна», обеспечивающий минимум BER (рис. 3). Затем с оптимальным размером «окна» строится гистограмма для всей совокупности исследуемых страниц данных (рис. 4).

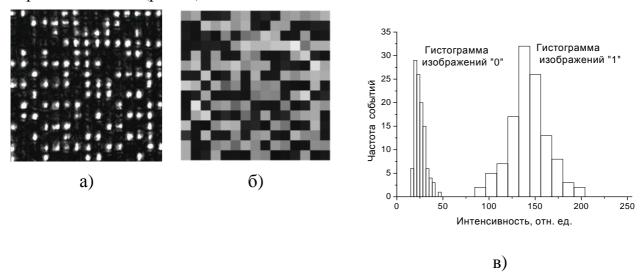


Рис. 2. Вид преобразованного изображения и соответствующей ему гистограммы

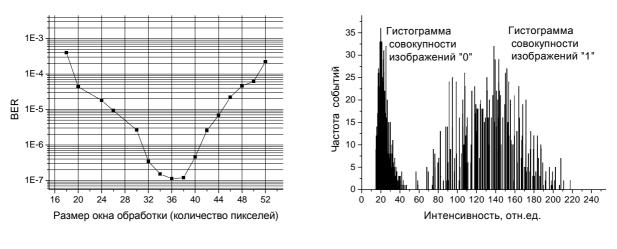


Рис. 3

Расчеты вероятности ошибки. Для получения наиболее точных оценок вероятности ошибки считывания важно найти адекватный вид распределений плотностей вероятностей мощностей изображений «1» и «0». С этой целью полученные гистограммы аппроксимированы методом наименьших квадратов.

Из полученных гистограмм видно, что экспериментально полученные распределения несимметричны, в отличие от приведенного выше нормального распределения. В случае распределения изображений «0» характерно плавное снижение яркости пикселей с правой стороны, а для «1» – наоборот. При этом нужно учесть, что значения яркостей пикселей не могут принимать

отрицательного значения. В результате подбора функций аппроксимации выбрано распределение Рэлея-Райса, характеризующее одномерное распределение огибающей суммы детерминированного сигнала и шума, распределенного по нормальному закону:

$$\rho_{1,0}(\mathbf{x}) = \mathbf{a}_{1,0} \cdot \frac{\mathbf{x}}{\sigma_{1,0}^2} \cdot \exp\left\{-\frac{(\mathbf{x}^2 + \mu_{1,0}^2)}{2 \cdot \sigma_{1,0}^2}\right\} \cdot \mathbf{I}_0\left(\frac{\mathbf{x} \cdot \mu_{1,0}}{\sigma_{1,0}^2}\right).$$
Аппроксимации гистограмм изображений " 1" и "0"

Рис. 5. Аппроксимация экспериментальных данных функциями Рэлея-Райса При аппроксимации экспериментальных данных изображений одиночных страниц данных получены результаты, представленные в табл. 1.

Таблица 1

Характеристики	Распределение Рэлея-Райса							
№ страницы	1	2	3	4	5	6	7	8
μ_0 - мат. ожидание изображений « 0 »	22,7	20,3	22,5	18,4	19,2	21,5	21,1	21,8
$\mu_{\!\scriptscriptstyle 1}$ - мат. ожидание изображений «1»	127,3	136,8	127,6	128,2	137,1	129,2	121,8	133,3
σ_0 - среднеквадратичное отклонение изображений «0»	4,8	3,6	3,8	3,9	4,8	5,8	3,1	4,5
$\sigma_{_1}$ - среднеквадратичное отклонение изображений «1»	15,1	23,6	15,5	24,4	22,9	22,7	19,1	21,7
Контраст μ_1 / μ_0	5,6	6,7	5,7	7	7,1	6	5,8	6,1
σ_0/μ_0	0,21	0,18	0,17	0,21	0,25	0.27	0,15	0,2
σ_1/μ_1	0,12	0,17	0,12	0,19	0,17	0,17	0,15	0,16
$SNR = \frac{\mu_1 - \mu_0}{\sqrt{\sigma_1^2 + \sigma_0^2}}$	6,6	4,9	6,6	4,4	5	4,6	5,2	5
BER	$1,\overline{2\cdot 10}^{-7}$	9.10^{-6}	$3,\overline{4\cdot 10}^{-8}$	$5,\overline{6\cdot 10}^{-5}$	$1,\overline{4\cdot 10}^{-5}$	$1,2 \cdot 10^{-4}$	$3,\overline{4\cdot10}^{-6}$	$1,5\cdot 10^{-5}$

Определив оптимальный размер окна обработки страницы данных, при котором наблюдается наименьший коэффициент битовой ошибки, проводим статистическое исследование совокупности страниц данных. Результаты расчетов с использованием аппроксимаций функцией Релея-Райса и нормальным законом представлены в табл. 2.

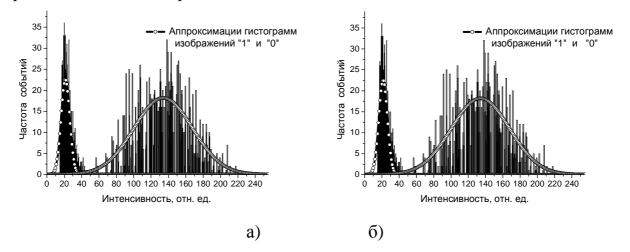


Рис. 6. Аппроксимация экспериментальных данных изображений шестнадцати страниц данных а) функцией Рэлея-Райса; б) гауссовой функцией

Таблица 2

Характеристики	Распределение Рэлея-Райса	Распределение Гаусса		
Количество страниц	16			
μ_0 - мат. ожидание изображений	20,9	21,5 123,8		
«0»				
$\mu_{\!\scriptscriptstyle 1}$ - мат. ожидание изображений «1»	120,8			
$\sigma_{\scriptscriptstyle 0}$ - среднеквадратичное отклонение изображений «0»	4,8	4,7		
σ_1 - среднеквадратичное отклонение изображений «1»	27	26,7		
Контраст μ_1 / μ_0	5,7	5,7		
σ_0 / μ_0	0,23	0,22		
σ_1/μ_1	0,22	0,22		
$SNR = \frac{\mu_1 - \mu_0}{\sqrt{\sigma_1^2 + \sigma_0^2}}$	3,64	3,77		
BER	$9,76 \cdot 10^{-4}$	$1,1\cdot 10^{-3}$		

Заключение. Разработана методика определения статистических характеристик восстановленных изображений страниц двоичных данных в голографической памяти с помощью высокоразрешающей ССD камеры и специализированного пакета программ. Установлено, что наиболее адекватно реальное распределение плотностей вероятностей мощностей изображений «1» и «0» описывается функцией Рэлея-Райса. Получены оценки вероятности

«аппаратной» ошибки считывания информации в голографической памяти, свидетельствующие о необходимости применения корректирующих кодов.

Работа выполнена при поддержке междисциплинарного интеграционного проекта Президиума CO PAH № 71 (2009-2011 гг).

© Е.Ф. Пен, Р.М. Русаков, 2010

УДК 535.317.1 *М.Ю. Родионов, Е.Ф. Пен* Институт автоматики и электрометрии СО РАН, Новосибирск

МОДЕЛИРОВАНИЕ И ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ МНОГОСЛОЙНЫХ НЕОДНОРОДНЫХ ОБЪЕМНЫХ ГОЛОГРАФИЧЕСКИХ РЕШЕТОК

В статье рассмотрены моделирование и анализ экспериментальных данных структуры, состоящей из многослойных объемных голографических решеток, записанных в фотополимерном материале.

M.Yu. Rodionov, E.F. Pen Institute of Automation and Electrometry SBRAS, Pr. Ak. Koptyuga 1, Novosibirsk, 630090, Russian Federation

MODELLING AND EXPERIMENTAL INVESTIGATIONS OF MULTILAYER NON-UNIFORM VOLUME HOLOGRAPHIC GRATINGS

In article is considered modeling and experimental data analysis of structure, consist of multilayer volume holographic gratings, recorded in photopolymer material.

Введение

Свойства объемных пропускающих и отражательных голографических решеток детально изучены Г. Когельником и другими авторами, показавшими, что такие решетки наряду с большой дифракционной эффективностью обладают высокой угловой и спектральной селективностью [1]. Структуры, состоящие ИЗ нескольких объемных решеток, разделенных оптически однородными промежуточными слоями (Multilayer Volume Holographic Grating -MVHG), имеют особые свойства, обусловленные интерференцией волн, решетки, предоставляют восстановленных ИЗ каждой И возможность управления видом селективного отклика [2]. Подобные структуры могут быть использованы при создании элементов оптических межсоединений, делителей лучей, спектральных фильтров, сенсоров и поэтому являются объектом специальных исследований [2-6]. Ранее недостаточное внимание уделялось случаю неоднородных параметров систем типа MVHG, что часто имеет место на практике, например, при использовании фотополимерных материалов $(\Phi\Pi M)$, обладающих усадкой толщины регистрирующего слоя изменяющимся время экспозиции поглощением света глубине во голограммы [7].

Цель данной работы - моделирование и экспериментальные исследования свойств структуры MVHG с неоднородными объемными голографическими решетками.

Методы моделирования MVHG

где

При анализе свойств MVHG, состоящих из *неоднородных* объемных пропускающих голограмм воспользуемся результатами работы [8], где неоднородные объемные голограммы представлены в виде набора слоев из *однородных* голограмм со своей передаточной характеристикой, а амплитуда результирующей выходной волны определяется путем перемножения матриц перехода каждого из слоев.

Схематично такая структура изображена на рисунке 1, где T_l - толщина голограммы с номером l, TD_m – толщина m-го промежуточного слоя, R и S – опорный и сигнальный пучки, R' – восстанавливающий пучок, \overline{n} – среднее значение показателя преломления регистрирующего материала и промежуточного слоя.

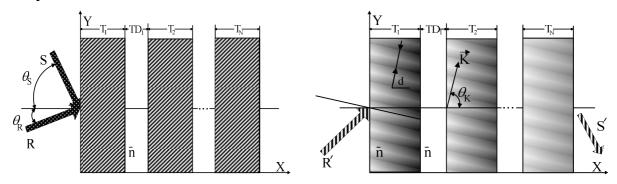


Рис. 1a. Схема записи MVHG Рис. 1б. Схема восстановления MVHG

Как известно, амплитуды прошедшего (восстанавливающего) и предметного (восстановленного) пучков однородной объемной пропускающей голограммы выражаются следующим образом [1]:

$$R = e^{-i\xi} \left(\cos(\xi^2 + v^2)^{\frac{1}{2}} + \frac{i\xi}{(\xi^2 + v^2)^{\frac{1}{2}}} \sin(\xi^2 + v^2)^{\frac{1}{2}} \right)$$

$$S = -i \left(\frac{c_R}{c_S} \right)^{\frac{1}{2}} v \exp(-i\xi) \frac{\sin(\xi^2 + v^2)^{\frac{1}{2}}}{(\xi^2 + v^2)^{\frac{1}{2}}}, (1)$$

$$v = \frac{kT}{(c_R c_S)^{\frac{1}{2}}}, \ \xi = \frac{T \vartheta}{2c_S}, \ \vartheta = \Delta \theta \cdot K \sin(\theta_K - \theta_0),$$

$$|\vec{K}| = \frac{2\pi}{d}, \ \theta = \theta_0 + \Delta \theta, \ \lambda = \lambda_0 + \Delta \lambda, \ \vec{n} = \varepsilon_0^{\frac{1}{2}},$$

$$\theta_0 = \frac{|\theta_R - \theta_S|}{2}, \ \theta_K = \frac{\pi}{2} - (\theta_0 - \theta_R), \beta = \frac{2\pi \vec{n}}{\lambda_0},$$

$$\Delta n = \frac{\Delta \varepsilon}{2\varepsilon_0^{\frac{1}{2}}}, \ k = \frac{1}{4} \left(\frac{2\pi \Delta \varepsilon}{\lambda_0 \varepsilon_0^{\frac{1}{2}}}\right), \ \varepsilon = \varepsilon_0 + \Delta \varepsilon \cos(\vec{K} \cdot \vec{y}),$$

$$2d \sin \theta_0 = \frac{\lambda_0}{\vec{n}}, \ c_R = \cos(\theta_R), \ c_S = \cos(\theta_R) - \frac{K}{\beta} \cos(\theta_K)$$

в свою очередь ε_0 и $\Delta \varepsilon$ — среднее значение и амплитуда пространственной модуляции диэлектрической проницаемости регистрирующей среды, λ_0 — длина волны в воздухе, T — толщина голограммы, d — период решетки, \vec{K} — вектор решетки, θ_K — угол вектора решетки, θ_R и θ_S — углы падения опорной и предметной волны в среде, θ_0 — угол Брэгга в среде, $\Delta \theta$ — расстройка угла Брэгга.

Матрица перехода голограммы записывается в виде

$$\mathbf{M} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}. \tag{3}$$

С учетом результатов [8, 9], можно получить:

$$\mathbf{M} = \begin{bmatrix} \left(\cos\phi + i\frac{\xi\sin\phi}{\phi}\right) e^{-i\xi} & -i\left(\frac{\tilde{\mathbf{n}}_{S}}{\tilde{\mathbf{n}}_{R}}\right)^{\frac{1}{2}} \frac{\upsilon\sin\phi}{\phi} e^{-i\xi} \\ -i\left(\frac{\mathbf{c}_{R}}{\tilde{\mathbf{n}}_{S}}\right)^{\frac{1}{2}} \frac{\upsilon\sin\phi}{\phi} e^{-i\xi} & \left(\cos\phi - i\frac{\xi\sin\phi}{\phi}\right) e^{-i\xi} \end{bmatrix}. \tag{4}$$

$$\phi = \left(\xi^{2} + v^{2}\right)^{\frac{1}{2}}$$

Перемножив матрицы перехода слоев для каждой объемной голограммы, получаем матрицу перехода, соответствующую *неоднородной* голограмме без поглощения. Промежуточный слой дает фазовый набег, считая, что показатель преломления промежуточного слоя равен показателю преломления голограммы, матрица перехода для такого слоя будет выглядеть следующим образом:

$$D = \begin{bmatrix} 1 & 0 \\ 0 & e^{-i\frac{\Delta\theta \cdot K \sin(\theta_K - \theta_0)TD}{c_s}} \end{bmatrix}, \quad \prod_{j=1}^{N} M_j \times D_j = M_N \times D_N ... \times D_j \times M_j \times ... \times D_1 \times M_1$$

$$\begin{bmatrix} R_{\text{out}} \\ S_{\text{out}} \end{bmatrix} = \prod_{j=1}^{N} M_j \times D_j \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
(5)

где TD – толщина промежуточного слоя.

Виды неоднородностей объемных голограмм зависят от свойств регистрирующего материала (в частности, ФПМ), времени и условий экспозиции [9]. Изменение модуляции показателя преломления по глубине

голограммы при записи в ФПМ, вызванное ослаблением интенсивности света по закону Бугера-Ламберта-Бэра, выражается в виде

$$\Delta n(x) = \Delta n_0 e^{-c_1 \frac{x}{T}}, \tag{6}$$

где \mathbf{c}_1 — константа, $\Delta\mathbf{n}_0$ — начальная величина модуляции показателя преломления.

Зачастую, особенно при наличии усадки, кроме изменения модуляции показателя преломления необходимо вводить параметры, описывающие искривление интерференционных полос, т.е. изменение K_x компоненты вектора решетки \vec{K} , обусловленное продольной и поперечной усадкой регистрирующего слоя

$$K_{x}(x,p,q) = K_{y} \cdot \left(-\frac{K_{0}}{K_{y}} + p \cdot \left(\frac{T/2 - x}{T} \right) + q \cdot \left(\frac{T/2 - x}{T} \right)^{2} \right), \quad y(x,p,q) = \int_{T}^{x} \frac{K_{x}(x,p,q)}{K_{y}} dx, \qquad (7)$$

где $K_{_0}$ — начальное значение вектора решетки в материале, $K_{_y}$ — постоянное значение у-компоненты вектора решетки, y(x,p,q) — уравнение интерференционных полос.

Для проведения расчетов использовалось программное обеспечение *Hologram Properties Modelling (version 4.00)*, содержащее модель многослойных объемных голограмм, неоднородных пропускающих голограмм и др. [10].

При анализе структуры, состоящей из неоднородных голограмм, будем учитывать изменение модуляции показателя преломления по глубине голограммы (6), и учтем влияние продольной и поперечной усадки регистрирующего слоя (7). Каждый *неоднородный* слой будем разбивать на 5 субслоев, которые будем считать однородными. Предположим, что толщина одной голограммы составляет 55 мкм, длина волны записи 635 нм, углы записи в воздухе $\theta_{\rm R} = -\theta_{\rm S} = 18^{\rm 0}$, показатель преломления промежуточного слоя и

внешней защитной пленки 1.48, показатель преломления регистрирующего слоя - 1.5.

Вначале, в качестве примера моделирования селективных свойств MVHG, рассмотрим структуру, образованную двумя голограммами толщиной Т = 55 мкм с модуляцией показателя преломления $\Delta n_0 = 0.0013$ каждой ИЗ них и разными толщинами промежуточного слоя. На рис. 2 видно, что при небольшой толщине промежуточного слоя (ТD = 10 мкм) селективности контур виду характеристики близок одиночной голограммы толщиной 2Т (кривая 1), однако при дальнейшем

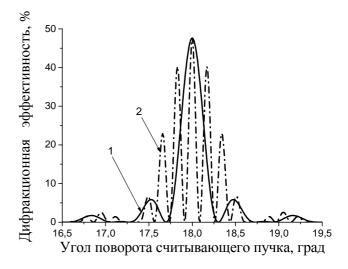
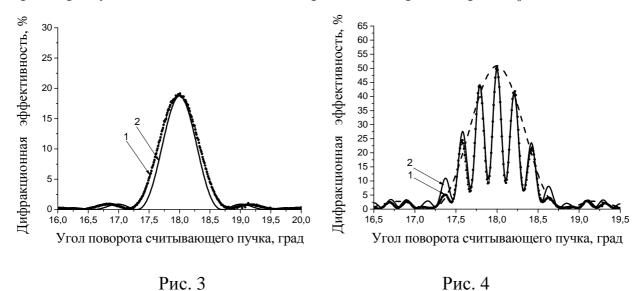



Рис. 2

увеличении этого параметра (TD = 175 мкм) в соответствии с выводами [4, 5] происходит обострение центрального лепестка и увеличение боковых лепестков (кривая 2).

Анализ экспериментальных и модельных данных

На рис. 3-4 представлено сравнение расчетных и экспериментальных данных структур типа MVHG, записанных на стендах [9]. На рис. 3 показана селективность одиночной голограммы, толщиной ФПМ 55 мкм, путем подгонки параметров установлено совпадение с расчетной кривой при $\Delta n_0 = 0.00156$.

На рис. 4 представлено сравнение экспериментальных данных (кривая 1) и расчетных характеристик селективности структуры MVHG, состоящей из двух неоднородных слоев толщиной 55 мкм, разделенных промежуточным слоем 175 мкм. В результате моделирования подобраны следующие параметры слоев: для 1-го слоя $\Delta n_0 = 0.0035$, для 2-го слоя $\Delta n_0 = 0.0014$, $c_1 = 2.5$ и p = -0.001 для обоих слоев. Видно, в отличие от рис. 2 в случае неоднородных голограмм интенсивность дополнительных минимумов внутри основного контура не достигает нуля, искривление интерференционных полос приводит к некоторой ассиметрии боковых лепестков. Огибающая экспериментальной кривой совпадает с контуром селективности одиночной голограммы.

Заключение

Получены структуры, состоящие из объемных неоднородных голограмм, разделенных промежуточными слоями. Проведены моделирование и экспериментальные исследования селективных характеристик таких структур. В качестве неоднородностей рассмотрены уменьшение модуляции показателя преломления по глубине голограммы и искривление интерференционных полос, наблюдающиеся в реальных фотополимерных материалах. Путем анализа экспериментальных данных найдены параметры этих неоднородностей.

Работа выполнена при поддержке междисциплинарного интеграционного проекта Президиума СО РАН № 71 (2009-2011 гг.).

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Kogelnik H. Coupled Wave Theory for Thick Hologram Gratings // The Bell System Technical Journal. 1969. V. 48. N. 9. pp. 2909-2947.
- 2. Aimin Yan, Liren Liu. Bragg diffraction of multilayer volume holographic gratings under ultrashort laser pulse readout // JOSA. 2009. V. 26. N. 1. pp. 135-141.
- 3. Nordin P. Diffraction properties of stratified volume holographic optical elements // JOSA. -1992. V. 9. N. 12. pp. 2206-2217.
- 4. Hesselink L. Analysis of photorefractive stratified volume holographic optical elements // JOSA. 1994. V. 11. N. 9. pp. 1800-1808.
- 5. Nordin P. Photopolymer-based stratified volume holographic optical elements // Optics Letters. 1992. V. 17. N. 23. pp. 1709-1711.
- 6. Якимович А.П. Многослойные объемные голографические решетки // Оптика и спектроскопия. 1980. Том 49. Выпуск 1. стр. 158-164.
- 7. Пен Е.Ф., Родионов М.Ю. Неоднородные и нестационарные брэгговские голограммы: модели и методы исследований // Автометрия. -2005. Том 41. № 2. с. 98-114.
- 8. Au L.B., Newell J.C.W., Solymar L. Non-uniformities in thick dichromated gelatin transmission gratings // Journal of Modern Optics. 1987. V. 34. N. 9. pp. 1211-1225.
- 9. Родионов М.Ю., Пен Е.Ф., Шелковников В.В. Влияние неоднородности объемных голограмм в фотополимерных материалах на их селективные свойства // Оптический журнал. -2006. Том 73. № 7. с. 60-64.
- 10. Rodionov M.Yu., Pen E.F. Modeling and experimental investigations of volume holograms in photopolymer materials // Proceedings of the Second IASTED International Multi-Conference, Signal And Image Processing (ACIT-SIP). 2005. pp. 15-20.

© М.Ю. Родионов, Е.Ф. Пен, 2010

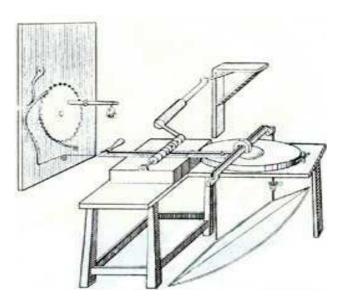
УДК 681.7.067 С.В. Критинина СГГА, Новосибирск

РАЗВИТИЕ СПОСОБОВ ОБРАБОТКИ ЛИНЗ

В статье даны исторические сведения о первых оптических станках обработки линз.

S.V. Kritinina SSGA, Novosibirsk

DEVELOPMENT OF LENSE MACHINING TECHNIQUES

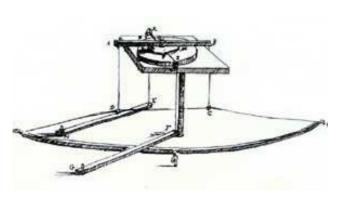

Historical data on the early optical machines for lens treatment are given.

Сама природа создала первое стекло. Около 450 000 000 лет назад расплавленная порода из недр Земли устремилась на поверхность и вулканами пробила земную кору. Из горячей лавы, содержащей двуокись кремния, при затвердении образовывалось стекло. Вулканическое стекло называется обсидианом. Человек делает стекло с древних времен. Египтяне более чем 5000 лет назад знали способ изготовления цветного стекла, которым они покрывали посуду, иногда делали бусы. Стеклянные флаконы для духов и мазей использовались в Египте более 3000 лет назад. Период Римской империи (1 век до н.э. – V век н.э.) был одним из величайших периодов в истории стекла. Именно в это время человек освоил, как выдувать стекло и каким образом придавать стеклянным предметам нужную форму и размер.

По своему составу египетское и римское стекло почти не отличались от простых сортов современного стекла (кремнезема - от 57,9 до 69,4%; щелочей от 14,9 до 30,5%; извести - от 3,4 до 5,6%; небольшое количество окиси железа, алюминия, магния). Песок, используемый при производстве стекла, имел примеси, и стекло приобретало зеленоватый или мутно-синеватый оттенок. Бесцветное стекло появилось в 1 веке до н. э. Его обесцвечивали добавлением перекиси марганца. При раскопках в Помпее были найдены бесцветные оконные стекла размером 72 х 54 см значительной толщины, но мало прозрачные. Прозрачного стекла, пригодного для оптических целей, в древности получено не было. Сырье плавили в тиглях, из полученной полупрозрачной массы формировали изделия. На раннем этапе стеклоделия получали голубое и бирюзовое стекло, окрашенное медью. Позднее стали изготовлять синее стекло, окрашенное кобальтом. Со II в. до н. э. была освоена техника прессования стекла в открытых формах. Для выдувания стекла использовалось простое приспособление - выдувательная трубка. Стеклоделие было также известно в Сирии, Финикии, Причерноморье и Китае. Впервые

плоское и прозрачное стекло значительной толщины появилось во второй половине XIII в. По-видимому, именно это стекло было использовано венецианскими шлифовальщиками для изготовления очков. В 1454 г. в Венеции был издан закон о смертной казни за разглашение тайны получения венецианского стекла. Вплоть до XVI в. венецианское стекло считалось лучшим в мире. Изобретение книгопечатания вызвало в середине XV в. повышенный спрос на очки. Очковые мастера появляются во всех крупных городах Европы. Техника шлифовки стекла все более совершенствуется. Входят в употребление специальные приспособления для шлифовки линз: бронзовые, железные, медные и латунные формы - "грибы" и "чашки" различных радиусов кривизны. После изобретения телескопа и микроскопа описаниям шлифовальных станков уделяли немало места в своих произведениях выдающиеся ученые XVII в. И. Гевелий, Х. Гюйгенс, Р. Декарт, И. Ньютон и др. и в более позднее время - Л. Эйлер, М.В. Ломоносов, уделяли большое внимание шлифовке и полировке линз и зеркал. Именно практические запросы заставили их заниматься этим. Так, благодаря повышению качества изготовления линз, а главное, благодаря тому, что ученые наконец осознали необходимость улучшения качества обработки линз, оптика в XVII в. превратилась из "чистой" науки в науку, имеющую огромное практическое значение. Оптические приборы (телескопы, зрительные трубы, а затем и микроскопы) становятся постепенно основными инструментами в руках ученых.

Особое внимание следует уделить шлифовальным станкам Рене Декарта, так ОН пытался как шлифовать линзы не co сферическими, а с асферическими поверхностями. Последнюю своего трактата ОН посвящает обработке лин3 c такими В поверхностями. ЭТОМ разделе рукописи, получившей название методе шлифовки стекол", подробное описание приводит чертежи конструкций шлифовальных станков. Даже наше время изготовление линз с асферическими поверхностями представляет значительные трудности. Во времена же Декарта разработка технологии

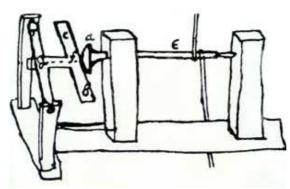


Стеклошлифовальный станок X. Гюйгенса (XVII в.)

изготовления подобных линз была поистине пионерским начинанием. В заключение своей "Диоптрики" Декарт впервые в научной литературе приводит приемы центрировки линз, с гиперболическими поверхностями: "Когда линзы шлифуют с обеих сторон, трудно добиться того, чтобы вершины двух гипербол были противоположны друг другу. В этом случае можно поступать следующим образом: сначала их края надлежит округлить на станке так, чтобы их

окружность была абсолютно равна окружности подставок, к которым они будут прикреплены для полировки; затем в момент прикрепления линз, пока гипс, вар или цемент, с помощью которых их присоединяют, еще свежи и мягки, их пропускают вместе с подставками через кольцо, в которое они едва-едва входят" [1, с. 187].

Разумеется, состояние техники в эпоху Декарта не позволяло получать хорошие линзы с асферическими поверхностями. Подобные станки появились только триста лет спустя. Стеклошлифовальные станки, которые строил другой

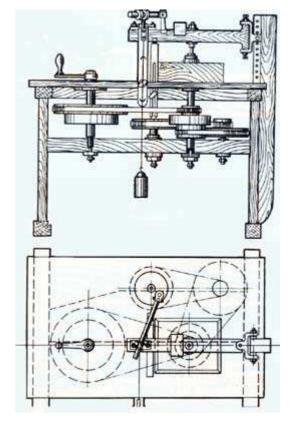


Станок для шлифовки линз X. Гюйгенса (XVII в.)

знаменитый оптик XVII в. – Христиан Гюйгенс, – также весьма интересны в конструктивном отношении. В начале 1662 г. он совместно со своим братом Константином построил станок для шлифовки линз, приведенный рисунке. Об ЭТОМ периоде деятельности Гюйгенса рассказывает письмо, написанное знаменитым Спинозой в ноябре 1665 г. секретарю Королевского общества Ольденбургу: "Гюйгенс занялся и теперь еще продолжает заниматься полировкой

диоптрических стекол. С этой целью он завел себе довольно хороший станок, на котором может выделывать и отливные формы. Чего он этим достиг, я еще не знаю, да, по правде сказать, и не особенно жажду знать. Ибо из личного опыта я убедился, что при помощи сферических форм простыми руками можно полировать и лучше и безопаснее, чем какою бы то ни было машиною" [2].

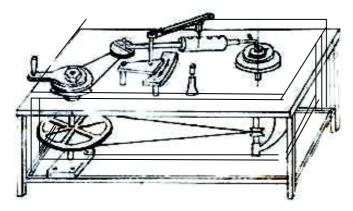
XVII век был веком подлинной революции в оптике. Характерной особенностью этой революции было то, что первостепенное значение при научных исследованиях стала играть техника. Ученый мир Европы был потрясен астрономическими открытиями Галилея, сделанными им в 1609-1610 гг. при помощи телескопа. Галилей усовершенствовал технологию изготовления линз до такой степени, какой она еще никогда не достигала. Это позволило ему изготовить зрительную трубу тридцатикратного увеличения, в то время как зрительные трубы простых ремесленников-оптиков увеличивали всего в три раза.



Станок для шлифовки линз Рисунок И. Ньютона (XVII в.)

В XVII в. шлифовкой и полировкой линз занимались ученые самых различных специальностей. Для этих целей ими создавались станки, разрабатывались отдельные вопросы прикладной оптики. Учитывая сказанное, неудивительно, что уже в 1666 г. Ньютон-студент занялся собственноручным изготовлением и шлифовкой линз и вогнутых зеркал для своих телескопов. Им были отшлифованы даже асферические линзы на им же собственноручно изготовленном станке. Однако никаких сведений об их качестве не сохранилось. В рукописях Ньютона имеется рисунок станка для шлифовки линз, приведенный на полях этой статьи, который он применял в своих занятиях практической оптикой [3].

В конце XIX в. произошел переход от группового привода шлифовальных станков к индивидуальному. Это расширило возможности совершенствования технологии механической обработки оптического стекла нескольких независимых перемещений последних. Этот метод, научное исследование которого было начато Ф. Престоном в 20-х годах XX в., получил название "классического". Однако при перенесении "классического" метода на процесс изготовления асферических линз возникли значительные трудности, связанные с тем, что этот метод исключительно благоприятен и легко реализуется лишь для формообразования сферических поверхностей. Последнее объясняется особенностями их геометрических свойств (любая сферическая поверхность допускает возможность трех независимых перемещений по сфере того же радиуса при сохранении взаимного соприкосновения во всех точках этих сфер).


Используя "классический" метод ДЛЯ изготовления асферических линз, мастер стремился получить на сферической поверхности погрешности, соответствующие заранее заданному расчету и превращающие эту поверхность асферическую. По образному выражению Д.Д. Максутова "оптик извлекал из арсенала своего опыта все приемы, как не следует полировать и выбирал из них такие, которые ведут к появлению у изделия необходимых теперь ошибок". Известно, что таким путем в XVIII-XIX изготовляли высококачественные асферические зеркала И.П. Кулибин, В.Н. Чикалев, О. Шотт. На собственноручных рисунках И.П. Кулибина онжом увидеть процесс обработки асферического зеркала положение режущего инструмента. Такая асферических технология изготовления поверхностей была лин3 усовершенствована в первой половине XX

Станок для полировки линз Й. Фраунгофера (начало XIX в.)

в. русскими оптиками А.А. Чикиным и Д.Д. Максутовым. Примерно в то же время (30-е годы XX в.) французский оптик Ш. Девен показал, что некоторые существенные элементы "классического" метода могут быть применены и для определенных асферических поверхностей, имеющих значительное отступление от ближайших им сферических.

Наибольшее распространение в первой половине XX в. оптические станки с шатунно-кривошипным механизмом двух типов. Для первого типа характерным является наличие связи механизма движения поводка и шпинделя. Во втором типе станков поводок и шпиндель получали движение независимо друг от друга. Эти конструкции станков использовались в первой половине XX в во всех странах, имеющих оптическую промышленность: Германии (фирма "Карл Цейсс"), в Англии (фирма "Тейлор"), в Бельгии (фирма "Бухман оптикал индустрис"), в США (фирма "Рокет полишерс"), в СССР (фирмы "Геофизика", "ГОИ", "ЛОМЗ" и др.). Для кинематических схем этих станков было свойственно наличие фрикционной передачи. Повышение требований к точности обработки оптических деталей неминуемо вело к поиску новых конструкций станков. В конце 40-х-начале 50-х годов XX в, появились оптические станки с пневматическим приводом. Повышение требований к аберрационным характеристикам оптических систем побудило конструкторов приборов вновь вернуться к вопросу обработки оптических асферическими поверхностями. Преимущества, которыми обладают оптические асферическими поверхностями, благодаря наличию дополнительных расчетных параметров были достаточно хорошо известны еще в XVII в. Р. Декарту, И. Ньютону, Г. Кассегрену, Д. Грегори. Однако в то время практическая реализация идеи создания асферической невозможна. Вопрос изготовления линз с асферическими поверхностями был вновь поднят в 20-х годах XX в. На первых порах обработку асферических поверхностей линз пытались производить тем же путем, что и обычных сферических линз, т.е. путем взаимного формирования через прослойку свободного абразива инструмента. Трудности, возникшие уже на первом этапе развития технологии получения асферической оптики, побуждали специалистов искать иные методы решения проблемы. Первой попыткой в этом направлении следует считать схему станков Рэне Декарта. Интересно отметить, что хотя эта схема была предложена Декартом еще в середине XVII в., она смогла быть практически реализована лишь в середине XX в. фирмой Цейсс. Первые инженерные подходы к процессу формообразования линз с асферическими поверхностями были предложены в 30-х годах ХХ в. Б. Шмидтом и Д. 40-xЖефри разработал Стронгом. годах XX В. схему станка, предназначенного для изготовления вогнутых конических поверхностей.

Многошпиндельный стеклошлифовальный станок XIX в.

В настоящее время реализовано большое число различных методов получения асферической оптики. Значительное место среди них принадлежит методам, предложенным советскими учеными И.А. Турыгиным, М.М. Русиновым, М.Н. Семибратовым, Л.С. Цеснеком, О.Г. Карлиным и др. Асферическая оптика все чаще применяется при расчете и изготовлении сложных оптических систем, как в нашей стране, так и за рубежом.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Декарт, Р. Рассуждение о методе с приложениями. Диоптрика. М.: АН СССР, 1953. 655 с.
- 3. Гуриков, В.А. Становление прикладной оптики XV–XIX века. М.: Наука, 1983. 51 с.

© С.В. Критинина, 2010

УДК 57.086 М.М. Кузнецов СГГА, Новосибирск М.С. Комбаров ФГУП ПО НПЗ, Новосибирск

СИСТЕМА ТЕХНИЧЕСКОГО ЗРЕНИЯ

Статья посвящена описанию способа модернизации микроскопов биологических, с целью возможности вывода результатов наблюдения микрообъектов на персональный компьютер.

M.M. Kuznetsov
SSGA, Novosibirsk
M.M. Kombarov
Federal State unitary enterprise "Production association "Novosibirsk instrument-making plant", Novosibirsk

COMPUTER VISION SYSTEM

Biological microscope is offered to be upgraded so that the observed microobjects could be displayed on the personal computer.

Для экспериментальных исследований была собрана установка на базе микроскопа МБУ-4, снабженным дополнительным, вторым осветителем, перед осветителями помещались сменные монохроматические светофильтры, а в наблюдательной ветви помещалась стандартная цифровая видеокамера, результаты работы установки регистрировались при помощи ноутбука компании ASER. Принципиальная оптическая схема микроскопа МБУ-4 представлена на рис. 1. Тн - нижний край тубуса; Тв - верхний край тубуса; Т – механическая длина тубуса; Δ – оптическая длина тубуса; Π – предмет; Γ 0б – задний фокус объектива; Γ 0 – передний фокус окуляра.

Пучок лучей, отразившись от зеркала 1, проходит через предметное стекло 4, на котором располагается предмет, и попадает в объектив 2. Объектив проектирует изображение в переднюю фокальную плоскость окуляра 3, где создается промежуточное, действительное, увеличенное, обратное изображение предмета, которое рассматривается через окуляр как через лупу.

Микроскоп дает увеличенное изображение. Зная увеличение объектива и увеличение окуляра, можно определить общее увеличение микроскопа, являющееся произведением величины увеличений объектива и окуляра.

Внешний вид экспериментальной установки представлен на рис. 2, внешний вид переработанного окуляра с видеокамерой на рис. 3.

Целью экспериментальных исследований было нахождение условий, при которых выигрыш в чувствительности измерений за счет замены монохроматического изображения псевдоцветным максимален.

Оконтуривание рассматриваемого изображения произойдет только в том случае, если, с одной стороны, в объектив не попадет регулярная составляющая, то есть $6 \ge 8$, а, с другой стороны, попадет диффузная составляющая, то есть выполняется условие $r \ge 6$, где r = 1 угол диффузного рассеивания фотослоя [1].

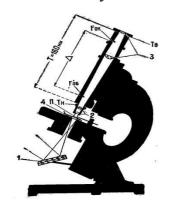


Рис. 1 Рис. 2 Рис. 3

На рис. 4 представлена зависимость информативности рассматриваемого изображения от угла между источниками света. По оси X – отложена величина угла в градусах, по оси У – процентное отношение полученной интенсивности, от максимальной интенсивности излучения источника света.

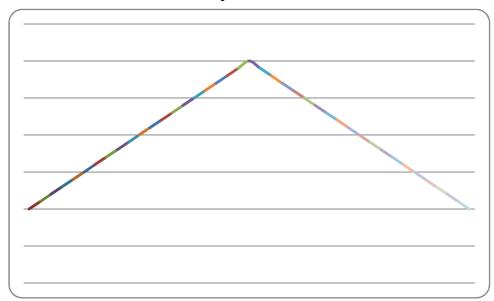


Рис. 4 БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Носков, М.Ф. Повышение чувствительности оптико-физических измерений путем нелинейной обработки изображений: дис. на соиск. учен. степ. д-ра техн. наук. – Новосибирск, 2007. – 180 с.

© М.М. Кузнецов, М.С. Комбаров, 2010

УДК 574:669 В.П. Перминов СГГА, Новосибирск

К ВОПРОСУ О МАГНИЕТЕРМИЧЕСКОМ ПОЛУЧЕНИИ ЩЕЛОЧНЫХ МЕТАЛЛОВ

В статье рассмотрены вопросы магниетермического получения и обеспечения безопасности выполнения этих работ.

V.P. Perminov SSGA, Novosibirsk

MAGNESIUM-THERMAL PRODUCTION OF ALKALI METALS

The problems of magnesium-thermal production of alkali metals and its safety are discussed.

В 1865 г. Н.Н. Бекетову впервые удалось восстановить алюминий магнием из криолита, термохимически обосновать этот процесс и тем самым открыть новый метод получения металлов и сплавов, который был назван металлотермическим.

Магний активный восстановитель почти всех окислов, так как образование окиси магния сопровождается значительной убылью свободной энергии.

Магний — перспективный восстановитель не только по признаку химического сродства к кислороду и другим неметаллам, но и по запасам (содержание его в земной коре по сводке А.П. Виноградова равно 2,1 %), а также по чистоте, которую обеспечивают современные методы его производства, например, электролитический магний имеет чистоту 99,9 %.

Крупные месторождения магниевого сырья, высокопроизводительная технология получения металла электролизом, а также сравнительно невысокая стоимость металла обуславливают возможность производства его в крупных промышленных масштабах.

Все это обеспечивает перспективность развития магниетермического восстановления, которое позволяет получать многие металлы, сплавы и соединения быстро и экономично.

Несмотря на относительную простоту этого процесса его практическое применение связано с рядом трудностей, в частности, недостаточной разработанностью его теоретических основ, трудности организации непрерывного производства и т.д. [1]

В данной работе приводятся некоторые накопленные к настоящему времени сведения о магнитермическом получении щелочных металлов (лития, натрия, калия, рубидия, цезия и франция).

Щелочные металлы нашли применение в атомной энергетике, лазерной технике, авиации, космических объектах, подводных лодках и т.д. [2]

Опыт получения и применения магния и щелочных металлов дает основания предполагать, что основными опасными и вредными производственными факторами здесь будут токсичность и пожаро- и взрывоопасность материалов.

В процессе магниетермического синтеза создаются условия для образования аэрозолей металлов и их соединений и возникает возможность воздействия их на организм человека.

В настоящее время установлены некоторые общие закономерности действия аэрозолей металлов и их соединений.

- 1. Аэрозоли ряда металлов при систематическом и длительном поступлении их в организм через органы дыхания способны вызвать патологические изменения.
- 2. Чем выше степень дисперсности частиц аэрозолей, тем более выражено их действие. Аэрозоли конденсации оказывают более резкое действие, чем аэрозоли измельчения.
- 3. Степень воздействия аэрозоля на дыхательные пути зависит от химического состава его частиц.
- 4. Степень, а иногда и характер патологического действия металлической пыли зависят от её количества, поступающего в дыхательные пути. [3, 4]

Дым металлического магния может вызвать «литейную лихорадку». У лиц, подвергающихся воздействию магния, наблюдаются носовые кровотечения, частый насморк, выпадение волос, потливость и синюшность рук, тремор рук, языка и век.

При травмировании кожи магнием наблюдаются плохо поддающиеся лечению болезненные припухлости или воспалительно-гнойные процессы.

Подобное действие на человека оказывает и окись магния. Так вдыхание 4-6 мг MgO в течение 12 мин вызывает явления, напоминающие «литейную лихорадку».

Магний поступает в организм в основном с пищей и выводится через желудочно-кишечный тракт.

Предельно-допустимая концентрация для магния и его сплавов рекомендуется $1 \text{ мг/м}^3 [5]$.

Температура воспламенения магния очень близка к температуре его плавления (651°C) или гораздо ниже её, если размеры образцов малы. Она зависит от геометрии образцов, размеров и формы. Мелкие образцы могут воспламеняться от пламени спички. Стружка или опилки при определённых условиях могут воспламеняться при 510 и даже при 430°C [2]. Нижний предел взрыво-опасной концентрации магниевой пыли в воздухе 10 г/м³. Таким образом, магниетермические производства по противопожарной классификации относятся к категории A, т.е. к взрыво- и пожароопасным.

По санитарной классификации они относятся к первому классу, т.е. возможны ожоги и поражения работающих.

Рассмотрим возможные варианты магниетермии применительно к получению щелочных металлов.

Известны несколько способов магнитермического получения лития, из которых перспективны основанные на применении вакуумной техники, например, из сподумена $Li_2O*Al_2O_3*4SiO_2$.

Литий и его соединения весьма токсичны. Хроническое отравление литием вызывает сонливость, головокружение, замедление сердечной деятельности. Гидроокись и хлорид лития — ожоги и язвы на коже. При работе с литием и его соединениями необходимо защищать кожу тела специальной одеждой, а лицо и глаза — очками или специальными щитками.

Для защиты дыхательных путей от воздействия окиси лития применяют противогазы и другие дыхательные аппараты [6].

Хотя натрий и калий в промышленных масштабах получают электролизом, тем не менее, вакуум-термический способ получения весьма перспективен. Термодинамические расчёты реакций взаимодействия NaF и KF с магнием

$$2 NaF + Mg = 2 Na + MgF_2$$

$$2 KF + Mg = 2 K + MgF_2$$

показывают их осуществимость.

В производстве натрия возможны ожоги, как расплавленным металлом, так и мелкой крошкой, которая, попадая на кожу, вызывает химические ожоги.

Попадание в глаза даже очень маленьких кусочков натрия или калия приводит к тяжёлому поражению вплоть до потери зрения.

При соприкосновении расплавленного натрия или калия с водой происходит взрыв, который сопровождается выбросом и загоранием расплавленного металла. Поэтому при работе с натрием и калием должны быть приняты меры индивидуальной защиты такие же, как при производстве лития.

Производство натрия и калия относится к категории взрыво- и пожароопасных. Поэтому в местах хранения этих металлов должны строго соблюдаться специальные противопожарные правила.

Твёрдый литий на воздухе загорается с трудом. Горящий литий засыпают порошками обезвоженных хлоридов лития и калия, а также мелкодисперсным графитовым порошком.

При возгорании натрия и калия их гасят сухой поваренной солью или кальцинированной содой. Применение воды и химпенных огнетушителей для тушения горящих лития и калия недопустимо [7].

Из магниетермических методов получения рубидия и цезия применяют восстановление из карбонатов в соответствии с уравнением:

$$Me_2CO_3 + 3Mg = 2Me = 3MgO + C.$$

Для получения рубидия в больших количествах лучше использовать реакцию:

$$2 RbOH + 2Mg = 2Rb + 2 Mg + H_2$$
,

так как при применении Rb_2CO_3 легко может произойти взрыв. С этой целью применяется смесь свежерасплавленного RbOH и магниевые опилки в отношении 2:1.

Аналогично получается и цезий.

Перспективно также восстановление магнием алюминатов по реакции: $Me_2O*Al_2O_3+Mg=MgO*Al_2O_3+2Me$ [8].

Что касается франция, самого тяжёлого радиоактивного щелочного металла, названного в своё время Менделеевым экацезием, то попыток получения его методами магниетермии не было.

Систематических исследований показателей безопасности, проводимых в сопоставимых условиях магниетермического получения металлов и сплавов, не проводилось, поэтому перспективным направлением оценки таких важных показателей, как токсичность или воспламеняемость веществ является сопоставление этих показателей с кристаллической структурой, определяемой положением в периодической системе элементов.

Таблица. Кристаллическая структура и некоторые свойства щелочных металлов

Металл	Кристаллическая структура	Периоды кристаллической решётки, А	Атомный радиус, А	Плотность, г/см ³	Температура плавления, °С	Температура кипения, °C	Твёрдость по Моосу	Модуль упругос-ти, кгс/мм ²	Температура воспламенения, t°C	Средняя леталь-ная доза ЛД ₅₀ мг*ат/кг
Li	ОЦК	a=3.5023	1.57	0.539	180.54	1327	0.6	500	630	14.26
Na	ОЦК	a=4.2820	1.8	0.9727	97.83	882.9	0.4	-	616	44.52
K	ОЦК	a=5.33	2.36	0.8629	63.41	760	HB 0.037	-	более 115	8.31
Rb	ОЦК	a=5.70	2.48	1.5348	38.7	703	0.3 HB 0.022	240		9.50
Cs	ОЦК	a=6.05	2.65	1.9-1.88	28.6	685.85	0.2 HB 0.015	175		8.67
Fr	ОЦК	-	2.83	2.44	20	630	-	_		-

В таблице приведены некоторые известные к настоящему времени показатели токсичности и воспламеняемости щелочных металлов в сопоставлении с кристаллической структурой.

Можно утверждать, что с некоторым «разрыхлением» структуры, о чём свидетельствует увеличение периода кристаллической решётки и атомного радиуса, монотонно снижаются температуры плавления и кипения, а также твёрдость; не противоречат этому и имеющиеся сведения о механических свойствах.

Можно предположить, что средняя летальная доза ЛД $_{50}$ для франция будет ниже восьми, а для натрия ниже 44.52. Соответственно следует ожидать, что температура воспламенения рубидия, цезия и франция будут ниже, чем у калия.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Самсонов, Г.В. Магниетермия / Г.В. Самсонов, В.П. Перминов. М.: Металлургия, 1971.-174 с.
- 2. Энциклопедия неорганических материалов. Киев: 1977. Т. 1. 840 с.; Т. 2. 813 с.
- 3. Брахнова, И.Т. Токсичность порошков металлов и их соединений. Киев: Наукова думка, 1971. – 223 с.
- 4. Брахнова И.Т. Конфигурационная модель вещества и прогнозирование токсичности соединений металлов // Порошковая металлургия. 1998. № 1/2. С. 136 -143.
- 5. Вредные вещества в промышленности. Справочник/под ред. Н.В.Лазарева и И.Д. Гадаскиной. – Л.: 1977. – 608 с.
 - 6. Литий / В.И.Субботин и др. М.: ИЗДАТ, 1999. 263 с.
 - 7. Натрий и калий / А.Ф. Алабышев и др. Л.: ТНТИ, 1959. 392 c.
- 8. Развитие и современное состояние технологии рубидия и цезия и их соединений / Плющев, В.Е., и др. / Успехи химии. 1957. Т. 26. 944 с.

© В.П. Перминов, 2010

УДК 620:191.33:681.17 О.К. Ушаков, Н.Р. Рахимов, Т.В. Ларина, Е.Ю. Кутенкова, В.А. Плиско СГГА, Новосибирск

ФИЗИЧЕСКИЕ ОСНОВЫ ПРИМЕНЕНИЯ ОПТОЭЛЕКТРОННОГО МЕТОДА С ИСПОЛЬЗОВАНИЕМ СВЕТОВОДОВ ДЛЯ КОНТРОЛЯ КАЧЕСТВЕННЫХ ПАРАМЕТРОВ МЕТАЛЛИЧЕСКИХ ПОВЕРХНОСТЕЙ

В статье рассмотрен один из импульсных методов волоконной оптики метод рефлектометрии или метод обратного рассеяния для контроля качественных параметров металлических поверхностей.

O.K. Ushakov, N.R. Rakhimov, T.V. Larina, Ye.Yu. Kutenkova, V.A. Plisko SSGA, Novosibirsk

PHYSICAL PRINCIPLES OF OPTOELECTRONIC METHOD APPLICATION WITH LIGHT DIODES USED FOR THE CONTROL OF METAL SURFACES QUALITATIVE PARAMETERS

The article deals with one of the pulse methods of fiber optics, i.e. scatterometry or backscattering for metal surfaces qualitative parameters control.

За последние годы при регистрации неоднородностей в радиоэлектронике сложилось новое научное направление — исследование объектов с помощью импульсных воздействий пико - или наносекундной длительности, называемое время импульсной технологией. При этом исследуемые объекты могут относиться не только к радиоэлектронике, но и к физике, химии, биологии и другим областям науки и техники.

Импульсный метод, основанный на анализе реакции исследуемого объекта на зондирующим (измерительный) импульс, имеет ценные особенности. Спектр пикосекундного сигнала исключительно широк (от нуля до нескольких десятков гигагерц), поэтому его воздействие вызывает возбуждение практически всех возможных типов собственных колебаний исследуемого объекта. Короткий зондирующий сигнал локализуется на малом участке объекта, что позволяет получить временные и частотные характеристики не только целого объекта, но и элементов его внутренней структуры, причем их отклики получаются развернутыми во времени.

Широкое использование время - импульсных методов исследования стало возможным после создания автоматизированных систем проведения экспериментов и измерений, созданных на основе пикосекундных импульсных генераторов, стробоскопических осциллографов и ЭВМ или встроенных измерительную аппаратуру средств вычислительной техники.

В отечественной и зарубежной периодической печати за последние годы появилось много публикаций, посвященных разным аспектам теории импульсных методов исследования объектов, разработке соответствующей аппаратуры и её разнообразным практическим применениям.

Оптический диапазон в последнее время привлекает все более широкое внимание в связи с возможностью передачи больших объемов информации при малых потерях, высокой помехоустойчивости и скрытности передачи. Мощным стимулом развития приборов и систем оптического диапазона является наличие высококогерентных, монохроматических источников оптического излучения – лазеров. Большие возможности лазеров проявляются в импульсном режиме работы. Кроме того, именно развитие лазерной техники позволяет получать световые импульсы длительностью в доли пикосекунды, что недостижимо другими известными способами.

В настоящее время импульсные измерительные системы оптического диапазона используются для исследования волоконных линий передачи, для измерений расстояний в космосе и атмосфере, исследования атомов и молекул и при решении других задач науки и техники.

При измерениях импульсным методом в волоконной оптике наибольшее распространение получил метод рефлектометрии или метод обратного рассеяния. Этот метод состоит в том, что в световод вводится мощный короткий импульс излучения и затем на том же конце регистрируется излучение, рассеянное в обратном направлении на различных неоднородностях (дефекты, нерегулярности границы сердцевины и оболочки и т.д.), по интенсивности которого можно судить о потерях.

Достоинство метода заключается в том, что он является неразрушающим, приборы подключаются на одном конце световода, что особенно удобно при измерениях в уже проложенном кабеле, трудоемкость проведения измерений невелика.

Метод обратного рассеяния позволяет решить следующие задачи:

- Определение неоднородностей волоконно-оптического тракта (здесь используется свойство импульсных сигналов быть локализованными по координате при распространении в направляющем тракте);
- Измерение дисперсионных искажений волоконных линий, их спектральных характеристик.

Предлагаемый авторами оптоэлектронный метод мониторинга поверхностей представляется перспективным в отношении простоты, удобства, технологичности и быстроты. К настоящему времени авторами разработан ряд оптоэлектронных приборов для неразрушающего контроля различных веществ и материалов [1].

В данном методе применяется принцип сравнения качественных параметров исследуемого объекта с эталоном, в роли которого могут применяться образцовые стандартизованные меры шероховатости и дефектности.

Основной измеряемой оптической характеристикой при данном методе выступает интенсивность отраженного светового потока от поверхности контролируемого объекта (КО), которая сравнивается с величиной аналогичной характеристики эталона. При этом измеряемой электрической характеристикой выступает сила тока или напряжение на фотоприемнике.

При исследовании цветности определяющей выступает четкость спектра излучения светоизлучающего диода (СИД) и монохроматическая чувствительность приемника оптического излучения (ПОИ), для других параметров – интегральная чувствительность ПОИ.

Контроль цветовых параметров на основе XYZ системы может осуществляться тремя способами. Первый — это визуальное сопоставление измеряемого цвета с эталонным. Эталон выбирается из заранее составленного цветового атласа или компьютерным программированием каждого из цветов. Второй — это спектрофотометрирование, наблюдаемого излучения и расчет координат X, Y, Z. Третий — это непосредственное измерение координат X, Y, Z при использовании трех эталонных приемников оптического излучения, спектральные функции, чувствительности которых в точности соответствуют кривым Y_x Y_y Y_z . Этот способ, несомненно, является наиболее перспективным, так как он удовлетворяет требованиям технологического процесса.

Для разработки по этому способу устройство должно выполнить следующие операции:

- Выделение анализирующего излучения на трех длинах волн (красный, зеленый и синий);
- Прием отражающих через контролируемый объект потоков излучения и преобразование их в фотоэлектрический сигнал;
 - Обработка и сравнение фотоэлектрического сигнала.

Назначение каждой из трех оптопар поясняется следующим образом: контролируемая поверхность облучается двумя световыми потоками с длинами волн λ_1 и λ_2 , один из которых является измерительным излучением, а другой - компенсационным.

Пусть на контролируемую поверхность падает световой поток Φ0λ. Освещенный слой разделит упавший на него световой поток на три части:

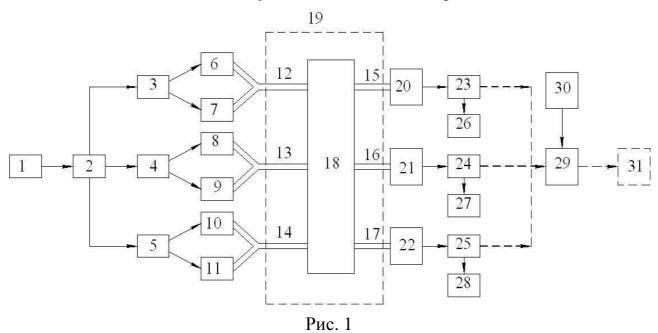
- $\Phi_{\lambda 1}$ отраженный от поверхности и попадающий на приемник оптического излучения, из которой пришел и падающий поток;
- $\Phi_{\lambda 2}$ отраженный от поверхности и не падающий на приемник оптического излучения;
- $\Phi_{\lambda 3}$ поглощенный поток, который в веществе слоя превратится в теплоту или другую форму энергии.

В соответствии с законом сохранении энергии сумма световых потоков равна падающему потоку:

$$\Phi_{01} = \Phi_{\lambda 1} + \Phi_{\lambda 2} + \Phi_{\lambda 3}$$

или

$$\frac{\Phi_{\lambda 1}}{\Phi_{0\lambda}} + \frac{\Phi_{\lambda 2}}{\Phi_{0\lambda}} + \frac{\Phi_{\lambda 3}}{\Phi_{0\lambda}} = 1$$

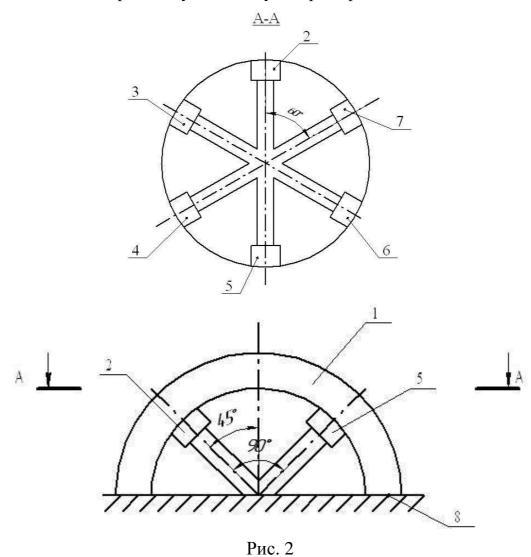

Для окрашенных веществ эти коэффициенты зависят от спектрального состава падающего излучения. Для монохроматического излучения с определенной длиной волны (как спектр излучения светоизлучающего диода), их обозначить $\rho(\lambda)$, $\tau(\lambda)$ и $\alpha(\lambda)$.

$$\lambda \mp \frac{1}{2}\delta\lambda$$

Спектральную зависимость этих коэффициентов удобно изображать графически. Предлагаемое устройство обладает повышенной точностью распознавания цвета за счет трех оптопар, которые контролируют три цветовых параметра, соответствующие параметрам X, Y, Z.

Устройство обладает повышенной точностью контроля за счет трехмерного измерения с длинами волн $\lambda_1=680$ нм, $\lambda_2=560$ нм, $\lambda_3=450$ нм, когда в качестве эталонных приемников оптического излучения применены многоцветные фоторезисторы.

При необходимости сигнал с выхода блока обработки фотоэлектрического сигнала можно подать в систему автоматического контроля.



На рис. 1 представлена структурная схема устройства анализатора цвета поверхности твердых материалов, а на рис. 2 - один из вариантов выполнения датчика [2].

Анализатор цвета состоит из датчика и электронного блока. Датчик выполнен в виде полусферы 1, в которую установлены три пары Y образных подводящих 2-4 и отводящих 5-7 оптоволокон.

Электронный блок включает в себя задающий генератор 9, коммутатор 10, три триггера 11-13, три выхода которых соединены с тремя измерительными светодиодами 14, 16, 18, вторые три выхода — с компенсационными светодиодами 15, 17, 19, три приемника оптического излучения 20-22, выход каждого приемника оптического излучения подсоединен к входу

соответствующего блока сравнения 23-25, выход каждого из которых соединен с соответствующим измерительным прибором 26-28. Далее электронный блок включает в себя блок обработки фотоэлектрического сигнала 29, запоминающее устройство 30 и измерительную систему, например, ЭВМ.

Устройство работает следующим образом. Задающий генератор 9 вырабатывает импульсы, которые подаются на вход коммутатора 10. Разделительные импульсы подаются на вход трех идентичных триггеров 11-13, три выхода которых соединены с тремя измерительными светодиодами 14, 16, 18, вторые три выхода — с компенсационными светодиодами 15, 17, 19 импульсы от триггеров поступают на соответствующие светодиоды. Каждый оптрон отвечает за контроль конкретного того или иного параметра.

Контролируемая поверхность 8, которая заключена в полусферу 1, по подводящим оптическим волокнам 2 - 4 облучается двумя световыми потоками (измерительным и компенсационным).

Оптоэлектронные пары заключены в кольцевой кожух из мягкой резины для необходимой ориентации датчика и светоизоляции оптического канала и расположены они под углом, например 45°, относительно друг друга и

симметрично относительно нормали к контролируемой поверхности в точке отражения.

Оптическое излучение отражается от контролируемой поверхности и отводящими оптическими волокнами 5 - 7 подается на приемники оптического излучения 20-22, работающие на длинах волн λ_1 =680 нм λ_2 =560 нм λ_3 =450 нм и преобразующие оптические сигналы в электрические. Благодаря прохождению света через подводящее и отводящее оптоволокно подается и принимается узкий пучок излучения, который дает возможность контроля параметров.

Далее сигнал попадает на свой блок сравнения 23, 24, 25, берется отношение двух сигналов (измерительных и компенсационных) и далее измерительной системой 26, 27, 28 определяют оттенки трех цветов. Процесс измерения на данном этапе можно закончить. Или три сигнала могут поступать на блок обработки фотоэлектрического сигнала 29, где сопоставляются с любым из ряда образцовых, хранящихся в запоминающем устройстве 30. Далее оба сигнала или их отношение подаются на измерительную систему или в ЭВМ 31. Благодаря прохождению света через подводящие 2-4 и отводящие 5-7 оптоволокна подается и принимается узкий пучок излучения, который дает возможность контроля параметров.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. . Ушаков, О.К. Оптоэлектронный метод определения качественных параметров металлических поверхностей / О.К. Ушаков, Н.Р. Рахимов, Т.В. Ларина // Сб. материалов V междунар. науч. конгр. «ГЕО-Сибирь-2009» Новосибирск, 2009. Т. 5., ч.1. С. 105-109.
- 2. . Заявка № 2009147534 (070349) Российская федерация. Анализатор цвета поверхности твердых материалов/Б.Н. Рахимов и др.; Государственное образовательное учреждение высшего профессионального образования «Сибирская государственная геодезическая академия».

© О.К. Ушаков, Н.Р. Рахимов, Т.В. Ларина, Е.Ю. Кутенкова, В.А. Плиско, 2010 УДК 681.586.5:621.384.3 *Н.Р. Рахимов, Е.Ю. Кутенкова, Т.В. Ларина, П.В. Петров, Ш.И. Мадумаров* СГГА, Новосибирск

ОПТОЭЛЕКТРОННЫЙ МЕТОД АНАЛИЗА ФИЗИКО-ХИМИЧЕСКИХ ПАРАМЕТРОВ НЕФТИ И НЕФТЕПРОДУКТОВ

Предлагается оптоэлектронная система с применением эффекта НПВО для контроля состава нефти и нефтепродуктов. Разработана оптоэлектронная система для определения эмульсионной воды в нефти и нефтепродуктах.

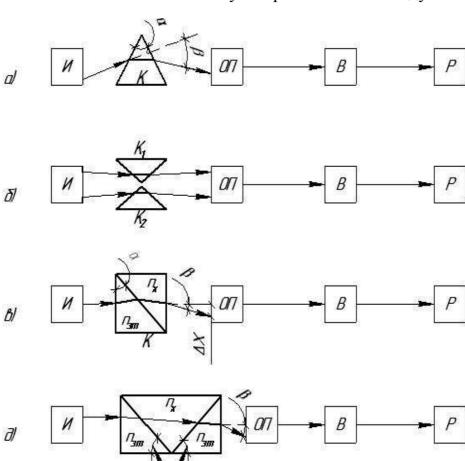
N.R. Rakhimov, Ye. YU. Kutenkova , T.V. Larina, P.V. Petrov, Sh.I. Madumarov SSGA, Novosibirsk

OPTOELECTRONIC METHOD USED FOR THE ANALYSIS OF OIL AND OIL PRODUCTS PHYSICOCHEMICAL PARAMETERS

Optoelectronic system is offered to be used with FTIR effect for oil and its products composition control. The optoelectronic system has been developed for revealing water emulsion in oil and its products.

В отечественных и зарубежных работах, посвященных автоматическому контролю физико-химических параметров нефти и нефтепродуктов, уделено мало внимания вопросам оптического контроля за составом и свойствам нефти и нефтепродуктов в нефтеперерабатывающем производстве.

К важнейшим оптическим свойствам нефти и нефтепродуктов относятся оптическая плотность, содержание различных компонентов веществ и другие характеристики, которые можно контролировать с помощью оптических методов, в том числе с применением различных рефрактометров.


Рефрактометры в зависимости от используемых оптических явлений подразделяются на призменные, интерференционные, инерционные, фокусирующие, стержневые, рефрактометры полного внутреннего отражения (ПВО) или нарушенного полного внутреннего отражения (НПВО), в которых используется зависимость предельного угла полного внутреннего отражения светового потока от коэффициента преломления контролируемой среды [1, 2].

Призменные рефрактометры используются для исследования только прозрачных сред и в зависимости от типа используемых призматических кювет обладают разными метрологическими свойствами. Структурные схемы основных вариантов оптоэлектронных призменных рефрактометров представлены на рис. 1.

Самой простой является конструкция кюветы на основе полой единичной треугольной призмы, заполненной исследуемым веществом (рис. 1, a). Расчетное выражение для нее имеет вид:

$$n = \frac{\sin\frac{\beta + \alpha}{2}}{\sin\frac{\alpha}{2}},\tag{1}$$

где α — преломляющий угол призмы; β — угол отклонения светового луча призмой из исследуемой среды.

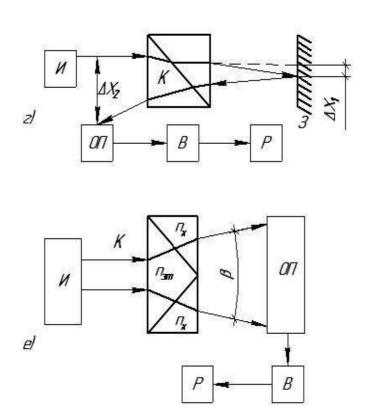


Рис. 1. Схемы оптоэлектронных призменных рефрактометров

Источник И создает единичный полихроматический или монохроматический световой поток. Его отклонение после призматической кюветы К, определяется информационным преобразователем ОП, подключенным к схеме В обработки выходного сигнала ОП, который фиксируется регистрирующим устройством Р.

Большую точность и лучшее разрешение по показателю преломления обеспечивают двухканальные рефрактометры со встречным включением призм (рис 1, б). В этом случае видеосигнал ОП содержит два импульса (рис. 1, б), которые определяются параметрами и расположением кювет K_1 и. K_2 , показателем преломления сред.

В целях упрощения конструкции оптической части рефрактометров в них отдельных трехугольных вместо кювет используют одну дифференциальную рефрактометрическую кювету виде единой В плоскопараллельной системы из двух трехугольных призм (рис. 1, в), В начальной положении в обе части таких кювет помещается эталонная: среда и фиксируется временное положение видеосигнала. При этом световой луч выходит из куветы нормально к её выходной грани. При замене в одной из частей кюветы эталонной среды на исследуемую луч света отклоняется от первоначального направления на угол β , пропорциональный Δn - разности показателей преломления сред в обоих частях кюветы. В результате чего луч на ОП смещается на величину Δx , а видеосигнал сместится на величину, определяемую выражением (2).

Расчетное выражение для полезных кювет имеет вид:

$$\Delta n = \frac{\Delta x}{L_{0} t g \alpha},$$
 (2)
где $\Delta x = \frac{l_{on}}{T_{p}} \Delta t.$

При $L_6=1$ м, $\Delta x_{min}=10^{-6}$ м, $\alpha=45^\circ$ разрешающая способность таких рефрактометров составляет $\Delta n_{min}=10^{-6}$.

Одноканальные одноплечие рефрактометры на основе подобных дифференциальных кювет, обладая простотой конструкции, обеспечивают при этом более высокую точность, чем одноканальные одноплечие рефрактометры на основе единичных треугольных призм.

Повысить разрешающую способность таких рефрактометров можно путем двукратного прохождения светового луча через дифференциальную кювету (рис. 1, г), для чего за ней помещают отражающее зеркальце 3. В этом случае вместо смещения луча Δx_1 с помощью ОП определяется смещение луча Δx_2 и разрешающая способность возрастает в m раз, где

$$m = \frac{\Delta x_2}{\Delta x_1}. (3)$$

Для повышения разрешающей способности одноканальных призменных рефрактометров в некоторых случаях используют кюветы на основе строенных треугольных призм (рис. 1, д).

Такие кюветы из строенных треугольных призм можно применять и в двухканальных рефрактометрах (рис. 1, е).

Кроме того важнейшей характеристикой нефти является цвет. Нефти имеют различную окраску в зависимости от плотности: жёлтую при $\rho < 0.79$, янтарную при ρ в пределах 0,79 - 0,82, коричневую и чёрную при $\rho > 0,82$. Цвет определяется его составом, нефтепродукта a именно содержанием ароматических асфальто-смолистых И веществ. Поэтому ПО нефтепродукта можно косвенно судить о степени его очистки от смолистых соединений [3].

Для определения цвета нефтепродукта используют такие приборы, как колориметры ЦНТ, КНС-1 и КНС-2 для нефтяных парафинов.

В данной работе предлагается следующая конструкция оптоэлектронного колориметра, блок-схема которого представлена на рис. 2, а на рис. 3 конструктивное выполнение датчика [4].

Оптоэлектронный фотоколориметр состоит из задающего генератора 1 (источника импульсного питания), коммутатора 2, светоизлучающих диодов СИД1 - 3, СИД2 - 4, СИД3 -5, СИД4 - 6, контролируемого объекта 7, отражающей поверхности 8, приемников оптического излучения ПОИ1 - 9, ПОИ2 - 10, ПОИ3 -11, ПОИ4 - 12, блока обработки фотоэлектрического сигнала - 13 и измерительного прибора 14 или ЭВМ - 15.

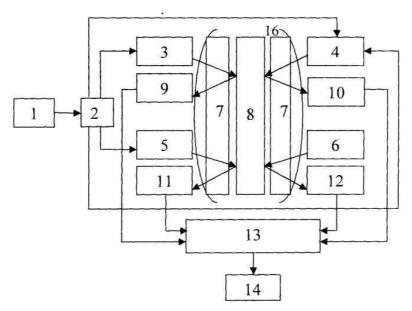
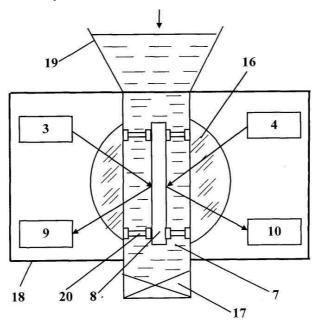



Рис. 2. Блок-схема оптоэлектронного колориметра

Датчик (рис. 3) включает в себя линзу-шар 16, полость которой представляет собой цилиндр, проходящий через ее центр, где уставлен посеребренный вал с отражающей поверхностью 8, кран 17 для перекрывания и пропускания потока исследуемой жидкости 7, помещенные в корпус 18.

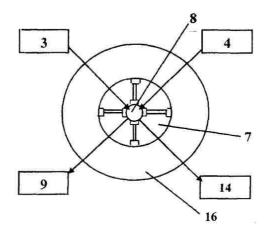


Рис. 3. Конструктивное выполнение датчика оптоэлектронного колориметра

Устройство работает следующим образом. При заполнении цилиндрического отверстия линзы-шара 16 (то есть кюветы) контролируемой жидкостью, она облучается несколькими светодиодами с длиной волны 315 — 1200 нм и устройство также можно установить в технологический процесс, т.е. можно контролировать нефть, протекающую через трубу по стрелке, указанной на рис. 2. При включении задающий генератор 1 вырабатывает прямоугольные импульсы 8 - 10 Гц. Разделенные импульсы через переключатели оптронов подаются на светоизлучающие диоды 3, 4, 5, 6.

В первом положении переключателя, поток излучения светоизлучающего диода 3 фокусируется и отражается от посеребренной поверхности вала 17 и далее попадает на приемник оптического излучения 8. Затем сигналы поступают в БОФС -12, где реализуется отношение сигналов компенсационного и измерительного потока. Сигнал отношения пропорционален величине коэффициента пропускания, оптической плотности жидких сред и прозрачных твердых тел, а также измеряется концентрация веществ в растворе, после предварительного определения потребителем градуировочной характеристики, подаются на измерительный прибор, по показанию которого судят об оптических параметрах жидких сред.

Предлагаемое устройство повышает точность измерения за счет двукратного прохождения излучения через исследуемый объект и стационарного расположения кюветы.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Отражательная рефрактометрия/ М.В. Лейкин и др. Л.: Машиностроение, 1983.
- 2. Рахимов, Н.Р. Оптический контроль в нефтеперерабатывающем производстве: монография. Фергана: Техника, 2004. 91 с.
- 3. Рябов, В.Г. Технология переработки нефти и газа. Первичная переработка нефти и газа: конспект лекций: учеб. Пособие. Пермь: Перм. Гос. Техн. ун-т, 2007. 225 с.
- 4. Заявка 2009146659 (066473) Российская федерация. Оптоэлектронный колориметр/Б.Н. Рахимов и др.; Государственное образовательное учреждение

высшего профессионального образования «Сибирская государственная геодезическая академия»

© Н.Р. Рахимов, Е.Ю. Кутенкова, Т.В. Ларина, П.В. Петров, Ш.И. Мадумаров, 2010

УДК 65.01 М.М. Кузнецов СГГА, Новосибирск Д.А. Кузнецова ФГУП ПО НПЗ, Новосибирск

СИСТЕМА МЕНЕДЖМЕНТА КАЧЕСТВА ПРЕДПРИЯТИЯ. ПУТИ СОВЕРШЕНСТВОВАНИЯ

В статье рассказывается о путях совершенствования системы менеджмента качества промышленного предприятия на примере Новосибирского приборостроительного завода

M.M. Kuznetsov SSGA, Novosibirsk D.A. Kuznetsova

Federal State unitary enterprise "Production association "Novosibirsk instrument-making plant", Novosibirsk

ENTERPRISE QUALITY MANAGEMENT SYSTEM. WAYS OF IMPROVEMENT

The ways of the industrial enterprise quality management improvement are shown by the example of Novosibirsk instrument-making plant.

К одному из основных принципов стандартизации в Российской Федерации относится принцип комплексности стандартизации для взаимосвязанных объектов [1].

К таким объектам, в частности можно отнести:

- Систему менеджмента качества (СМК) по ГОСТ Р ИСО 9001-2008 [2];
- Систему экологического менеджмента (СЭМ) по ГОСТ Р ИСО 14001-2007 [3];
 - Систему управления охраной труда (СУОТ) по ГОСТ 12.0.230-2007 [4];
 - Систему социальной ответственности (CO) по SA:8000 [5].

Для всех систем характерно наличие политик по СМК, СЭМ, СУОТ, СО.

Проанализировав, обобщив и систематизировав требования всех приведенных документов можно сформулировать единые требования как в целом для интегрированной системы менеджмента, так и в частности - для интегрированной политики организации — основополагающего документа системы.

Высшее руководство должно обеспечивать, чтобы интегрированная политика (ее цели):

- Соответствовали целям организации;
- Включали обязательство соответствовать требованиям и постоянно повышать результативность интегрированной системы;
- Составляли основы для постановки задач и целей в области СМК,
 СЭМ, СУОТ, СО;
- Были доведены до сведения персонала организации и заинтересованных сторон, в том числе и общественности и были понятны им;
 - Анализировались на постоянную пригодность;
- Соответствовали характеру, масштабу и воздействиям ее деятельности, продукции и услуг на окружающую среду;
- Включали обязательства соблюдать соответствующее законодательство в области СМК, СЭМ, СУОТ, СО и других требований, которые организация обязалась выполнять;
- Обеспечивали безопасность и охрану здоровья всех работников организации путем предупреждения несчастных случаев и профессиональных заболеваний на производстве.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. ГОСТ Р 1.0-2004. Стандартизация в Российской Федерации. Основные положения [Текст]. М.: Изд-во стандартов, 2005. 9 с.
- 2. ГОСТ Р ИСО 9001-2008. Системы менеджмента качества. Требования. [Текст]. М.: Стандартинформ, 2009. 25 с.
- 3. ГОСТ Р ИСО 14001-2007. Системы экологического менеджмента. Требования и руководство по применению. [Текст]. М.: Стандартинформ, 2007. 21 с.
- 4. ГОСТ 12.0.230-2007. Систе ма стандартов безопасности труда. Системы управления охраной труда. Общие требования. [Текст]. М.: Стандартинформ, 2008. 15 с.
- 5. SA8000:2001. Социальная ответственность [Электронный ресурс]. Режим доступа: e-mail:info@sa-inti.org.

УДК 535.62 М.М. Кузнецов СГГА, Новосибирск

О ТЕОРИИ ПРИКЛАДНОГО ЦВЕТОВОГО МОДЕЛИРОВАНИЯ

В статье рассматриваются вопросы теории прикладного цветового моделирования, основные цветовые модели, рассматриваются краткие результаты исследования разницы между излучаемым и отраженным светом.

M.M. Kuznetsov SSGA, Novosibirsk

THE THEORY OF APPLICATION COLOUR MODELING

The article deals with the problems of application colour modeling theory, main colour models and brief research results as concerns the difference between the emitted light and the reflected one.

Прикладное цветовое моделирование, сводившееся к синтезу новых цветов методом смешивания имеющихся пигментов, возникло практически одновременно с появлением живописи [1]. Значительно позже начались и опыты по анализу красок, то есть, выявлению чистых, изначальных цветов, не являющихся смесями, и определению их минимального количества.

Исходной цветовой моделью может считаться цветовая полоса, представляющая собой упрощенное изображение спектра семью локальными спектральными цветами. Живописцы размещали чистые краски вдоль края палитры в порядке следования цветов солнечного спектра, а в промежутках создавали красочные смеси. Округлая форма палитры подсказала идею усовершенствования этой модели: расположение красок по кругу (цветовой круг Ньютона).

Выделение трех основных цветов и их смесей показало, что количество цветов, достаточное для реалистичной передачи большей части спектра, может быть сокращено до шести. В этом случае на цветовом круге первичные цвета строго чередуются со вторичными, образуя два наложенных друг на друга треугольника. При этом выявилась и еще одна закономерность: диаметрально противоположные пары первичных и вторичных цветов оказались максимально контрастными по тону. Обнаружилась и способность смеси двух парных цветов давать практически такую же насыщенность смесевого "черного" цвета, которая достижима при смешивании всех трех основных цветов. Способность парных цветов дополнять друг друга до черного закрепилась в названиях "основные" и "дополнительные" цвета.

Окончательным вариантом этой модели стал треугольник, на вершинах которого расположены первичные цвета, а на биссектрисах — вторичные. Дополнительным считается цвет, расположенный напротив любого, принятого за основной.

Треугольная модель стала вершиной цветового моделирования, использовавшей максимум возможностей двумерного представления цвета. Между тем, далеко не весь набор характеристик цвета, необходимых для исчерпывающего описания его свойств смог уложиться на плоскости. Плоская модель, прекрасно описывающая смешение цветов между собой, показала свою уязвимость в вопросах их утемнения и высветления, то есть смешивания спектральных цветов с черным и белым.

Типичным представителем пространственных цветовых моделей является модель HSB, аббревиатура которой составлена из первых букв английских слов, обозначающих цвет, насыщенность и яркость. Ее основой является цветовой круг, по периметру которого расположены все спектральные цвета максимальной насыщенности.

Таким образом, обобщенная цветовая модель представляет собой объем, заполненный всеми существующими цветами, точным описанием каждого из которых является его положение в пространстве.

Классическим примером такой модели служит шар Рунге – абсолютно симметричное по всем осям тело. В качестве его главного сечения взят цветовой круг максимальной насыщенности и нормальной яркости, а длина серой шкалы равна диаметру круга. Начальные интенсивности всех цветов считаются равными и изменяющимися к полюсам по одному и тому же закону. Модель Рунге является одной из наиболее удобных иллюстраций принципа построения пространственной цветовой модели.

Черты обобщенной модели можно обнаружить и в работах других исследователей. Очень похожа на нее модель Ламберта, наиболее существенным отличием которой является упрощенное, линейное, а не экспоненциальное изменение светлоты или насыщенности. Одним из самых простых вариантов пространственной модели является и пирамида Оствальда, построенная на базе плоской треугольной модели вдоль однонаправленной серой шкалы.

При всем изяществе и наглядности этих моделей, они не учитывают особенностей психофизического восприятия человеком различных областей спектра, предполагая одинаковую для всех цветов интенсивность. Между тем, даже при беглом взгляде на радугу, заметна ощутимая разница кажущейся яркости цветов. Попыткой учесть это явление стала модель Манселла, сечения которой получили отличные от круговых формы. В ней "радиусы" различных цветов пропорциональны их интенсивности — для "ярких" цветов они больше, для "приглушенных" — меньше. Существенным отличием этой модели является отсутствие явно выраженной главной цветовой плоскости. Здесь каждый цвет наделен собственной плоскостью, место которой определяется светлотой тона — чем он светлее, тем она выше. Тем не менее, цветовое тело Манселла не только выглядит как возможный вариант обобщенной модели, главная цветовая

плоскость которой неперпендикулярна оси, но и является таковым на самом деле.

Подводя итоги исследования разницы между двумя видами света, можно сделать следующие выводы:

- Излучаемый свет в общем случае это первичный свет, испускаемый источником света (солнцем, луной, светильниками и т.п.). Несмотря на то, что он является суммой множества составляющих, благодаря особенностям зрительного восприятия, излучаемый свет выглядит белым (или слегка тонированным). Соответственно, черный цвет представляет собой отсутствие света, или темноту;
- Отраженный свет это вторичный (но отнюдь не второстепенный, а скорее наоборот, наиболее важный в информационном смысле) свет, идущий от поверхности неизлучающего объекта и содержащий информацию о нем, а не об источнике света. Именно благодаря отраженному свету мы видим предметы, которые его отражают. Он представляет собой разность, полученную при вычитании спектра поглощения объекта из спектра излучения светила. Белый цвет характеризует полное отражение падающего света, а черный полное его поглощение.

Эти явления и лежат в основе способа [2] повышения чувствительности и точности интерференционных измерений, основанной на выделении экстремумов интерференционных полос при фотографической регистрации интерференционных картин на контрастных материалах в нелинейном режиме.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Вотяков, Е. Свет и цвет в изобразительном искусстве [Электронный ресурс]. Режим доступа: http://ujack.narod.ru/colormod01.htm.
- 2. Кузнецов, М.М. Двухлучевой интерферометр повышенной чувстви тельности для регистрации сверхмалых подвижек тектонических плит. [Текст] / М.Ф. Носков, М.М. Кузнецов // Изв. вузов. Горный журнал. -2007. -№ 4. C. 58–61.

© М.М. Кузнецов, 2010

УДК 681.7 М.М. Кузнецов СГГА, Новосибирск

КОНТРОЛЬ ОПТИЧЕСКИХ ДЕТАЛЕЙ МЕТОДОМ ПСЕВДОЦВЕТОВОГО АНАЛОГОВОГО КОДИРОВАНИЯ

В статье рассказывается о способе контроля оптических деталей методом псевдоцветового аналогового кодирования.

M.M. Kuznetsov SSGA, Novosibirsk

CONTROL OF OPTICAL DETAILS BY FALSE-COLOUR ANALOG ENCODING

The method of false-colour analog encoding used for optical details control is described.

Качество стекла определяется его показателями, предусмотренными [1] для бесцветного и [2] для цветного оптического стекла.

Так, в числе нормируемых показателей для стекла оптического бесцветного есть характеристики по бессвильности и пузырности, такие-же требования предъявляются и к стеклу оптическому цветному.

Категории пузырности определяется [3].

В общем случае ГОСТ определяет пять категорий бессвильности; семь групп и восемь классов по пузырности в зависимости от числа и площади наблюдаемых дефектов.

Особенно часто в стекле встречаются пороки виде пузырей и свилей. Пузыри имеют округленную форму и заполнены воздухом, занесенным в стекло вместе с шихтой, и газами, образующимися в процессе варки стекла. Их размеры обычно колеблются от 0,1 до 3,0 мм, но встречаются также пузыри больших и меньших размеров. Некоторые марки стекла, например тяжелые кроны и баритовые флинты, содержат повышенное количество пузырей. Пузыри вызывают рассеяние света.

В настоящей работе рассматриваются некоторые аспекты применения разработанного ранее [4] способа, позволяющего выделить границы объектов и тем самым повысить информативность контроля оптических деталей.

Для экспериментальных исследований была собрана установка на базе микроскопа МБУ-4, снабженным дополнительным, вторым осветителем, перед осветителями помещались сменные монохроматические светофильтры, а в наблюдательной ветви помещалась стандартная цифровая видеокамера,

результаты работы установки регистрировались при помощи ноутбука компании ASER.

На рис. 1, 2 и 3 представлены изображения дефектов (царапин, полос и пузырей) в линзе и оргстекле соответственно при увеличении 56^{X} .

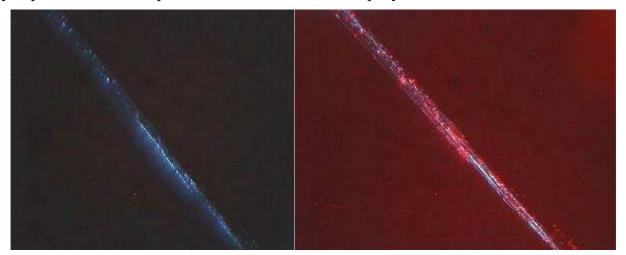


Рис. 1. Царапина на линзе

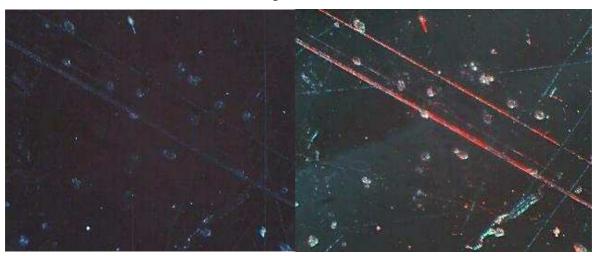


Рис. 2. Дефекты органического стекла

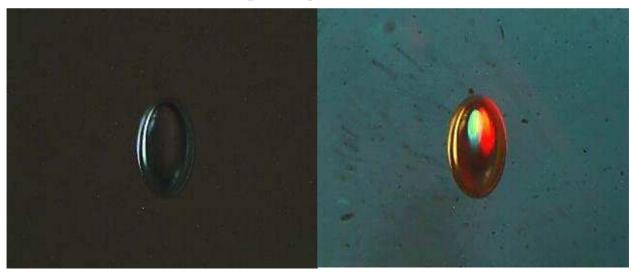


Рис. 3. Дефект – пузырь в стекле

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. ГОСТ 3514-76. Стекло оптическое бесцветное. Технические условия. Минск.: Межгосударственный совет по стандартизации, метрологии и сертификации, 1994. 34 с.
- 2. ГОСТ 9411-91. Стекло оптическое цветное. Технические условия. М.: Комитет стандартизации и метрологии СССР, 1991. 48 с.
- 3. ГОСТ 23136-93. Материалы оптические. Параметры. Минск.: Межгосударственный совет по стандартизации, метрологии и сертификации, 1993. 21 с.
- 4. Кузнецов, М.М. Двухлучевой интерферометр повышенной чувствительности для регистрации сверхмалых подвижек тектонических плит / М.Ф. Носков, М.М. Кузнецов // Изв. вузов. Горный журнал. -2007. -№ 4. C. 58–61.

© М.М. Кузнецов, 2010

УДК 65:681.2 М.М. Кузнецов СГГА, Новосибирск М.С. Комбаров ФГУП ПО НПЗ, Новосибирск

О ТЕХНОЛОГИИ НА ФГУП ПО НПЗ

В статье приведен критический анализ состояния технологий и технологического оснащения производства на Новосибирском приборостроительном заводе.

M.M. Kuznetsov
SSGA, Novosibirsk
M.M. Kombarov
Federal State unitary enterprise "Production association "Novosibirsk instrument-making plant", Novosibirsk

TECHNOLOGIES OF NOVOSIBIRSK INSTRUMENT-MAKING PLANT

The state of technologies and equipment at Novosibirsk instrument-making plant is analyzed.

С начала 2000-х годов российское машиностроение начало свой подъем после затяжного застоя характеризовавшего общее состояние российской промышленности периода 1990 гг. К началу нового тысячелетия российское машиностроение подошло в крайне парадоксальном состоянии — с одной стороны сохранились высококвалифицированные кадры (хотя и долгое время не имевшие достаточного практического опыта), с другой стороны — имеющийся парк, пусть и высокоточного и производительного, оборудования устарел не только морально, но и физически; был потерян практический опыт работы и нарушена преемственность поколений производственного персонала (как рабочих, так и инженерного персонала).

Примерно в это же время появилась еще одна опасная тенденция – ослабление уровня подготовки специалистов в учебных заведениях. Отсутствие производства на крупных промышленных предприятиях привел к тому, что у образовательных учреждений возникли трудности в проведении производственной практики и «привязки» процесса обучения к условиям конкретных базовых предприятий. Да и само понятие «базового предприятия» потеряло свое значение. Спасением промышленных предприятий стало выполнение мелких разовых заказов и заказов «естественных монополий».

В это время развитие машиностроения за границами бывшего СССР продолжалось – повышалась точность оборудования, совершенствовались

интегрированные системы подготовки производства, внедрялись новые инструментальные материалы, а также внедрялись в серийное производство принципиально новые методы обработки — которые в конце восьмидесятых годов только-только были реализованы в виде реальных устройств или ограниченно применялись в отдельных, узкоспециализированных, отраслях машиностроения (системы прототипирования, гидроабразивная обработка, лазерные методы обработки, плазменная обработка).

Развитие машиностроения за рубежом и приобретение в основном импортного оборудования привело, как это не парадоксально, к резкому технологическому скачку на тех предприятиях куда это оборудование попадало, также вместе с оборудованием приобретался и высокопроизводительный инструмент. Приобретение инструмента и оснастки объяснялось еще и тем, что инструментальные службы предприятий не могли изготавливать требуемый высокопроизводительный и высокоточный инструмент.

Характерной чертой современного оборудования является повышение скоростей резания и точности обработки и как следствие повышение производительности. Правда следует заметить, что современные станки при более высокой производительности имеют значительно меньшую жесткость, чем станки тридцатилетней давности, поскольку сама идеология обработки на высоких скоростях резания не требует применения мощных приводов и других силовых элементов повышенной жесткости. Это привело к определенным трудностям при освоении современных станков специалистами привыкшими к старым станкам. Да, современные станки имеют меньшую допустимую глубину обработки чем старые, однако за счет большей скорости резания, более высоких скоростей, как рабочих, так и холостых перемещений это оборудование в среднем имеет производительность в 2,5...3 раза выше чем старое оборудование. Резкое повышение скоростей резания, как уже говорилось выше, потребовало коренного пересмотра отношения к режущему инструменту – более широкому, чем ранее, применению твердых сплавов, применению композиционных режущих материалов, использованию инструмента с напылением и специальными покрытиями, общему повышению требований к точности изготовления инструмента, его проектированию. Повышение скоростей резания изменило и требования к использованию вспомогательных материалов, особенно СОЖ. В современном оборудовании уже не возможно применение старых СОЖ на основе сульфофрезола, эмульсола и т.п. материалов, я уже не говорю об использовании масла и воды – что зачастую приходилось видеть на российских предприятиях. Отрадно, что большинство предприятий стараются не экономить на СОЖ, используя высококачественные материалы, рекомендованные производителями оборудования, а также появившиеся в последние несколько лет их российские аналоги.

Тенденцией последних лет, как следствие положительного опыта эксплуатации закупавшегося оборудования, стало увеличение количество одновременно управляемых осей для оборудования, использование токарных обрабатывающих центров с противошпинделями, четырех-, а зачастую и

пятиосевых обрабатывающих центров для корпусных деталей, что сводит к минимуму необходимость переустановов и повышает точность обработки. В настоящее время почти полностью из производства уходят доделочные операции, резко сократился объем слесарных, сверлильных и резьбонарезных операций. Применение высокоскоростной обработки позволило значительно сократить число шлифовальных операций при обработке корпусных деталей и обработке тел вращения.

Обновление парка оборудования коснулось не только основных формообразующих переходов – фрезерования, точения, растачивания, но и заготовительных.

Началось массовое внедрение современных ленточнопильных станков с программным управлением – применение ленточных пил не только значительно повысило производительность при разрезке прутковых материалов, но и значительно сократило потери материала за счет меньшей ширины реза и более высокой шероховатости поверхности реза, на отдельных видах материала время реза сократилось в 2...3 раза, а ширина реза в 3...5раз, при этом почти в 2 раза повысилась точность резания.

Широкое применение в заготовительном производстве нашли такие как лазерная и плазменная резка металлических гидроабразивная резка металлических и неметаллических материалов, а также координатная листовая штамповка. Если внедрение лазерной и плазменной резки явилось закономерным развитием методов нашедших свое практическое применение еще в 80-х годах прошлого века, то гидроабразивная резка материалов принципиально новый метод обработки материала, ЭТО обеспечивающий резку любых материалов, В т.ч. горючих, прозрачных, причем, поскольку процесс резания не сопровождается плавлением или горением материала, то данный метод является экологически чистым, что то же является немаловажным в современных условиях.

Если внимательно рассмотреть все те новые технологии и оборудование, которые нашли свое применение в промышленности в последние годы, то обращает на себя широкое применение элементов комплексной автоматизации подготовки производства и создание интегрированных систем с общими обеспечивающих обмена информацией И автоматизированного проектирования УП. Именно широкое распространение подобного оборудования вкупе с развитием средств ВТ и программного обеспечения и общим повышением уровня автоматизации российских предприятий привело к возрождению комплексных информационных систем технологической подготовки производства и практическому внедрению систем сквозного проектирования, идеология которых была разработана еще в 70-80годы. Немаловажным фактором обеспечившим создание таких систем, стала «открытой архитектуры» (заимствованная ИЗ индустрии), т.е. отсутствие общей привязки создаваемых систем к конкретному производителю оборудования и возможность включения в единую систему оборудования различных систем и производителей.

Все вышеперечисленное, вместе с относительно сжатыми внедрения, привело к своего рода «технологической революции», можно даже сказать к «перевороту» в российском машиностроительном производстве. Этот переворот был бы еще более сильным, если бы не ограниченные финансовые предприятий. Если ВЗЯТЬ статистики обновления возможности оборудования за последние 5 лет, то обращает на себя внимание процент замены оборудования – 1...3% в год, при этом доля современного оборудования в общей номенклатуре составляет 10...20%, однако, если при этом посмотреть на загрузку приобретаемого современного оборудования, то оказывается, что «съем» с современных станков в два-три раза выше, чем со старых. Т.е. новое имеет большую эффективность оборудование чем старые эксплуатируются в более интенсивном режиме – две-три смены (на что, собственно говоря, они и рассчитаны).

К сожалению, технические подразделения российских предприятий не всегда были готовы к такому оборудованию – и в плане технологической подготовки производства и в плане обеспечения эксплуатации оборудования. Внедрение данного оборудования потребовало проведения переобучения инженерного персонала, а также технического персонала обеспечивающего эксплуатацию этого оборудования, ну и конечно рабочих.

Основными тенденциями развития современного машиностроительного производства в России является дальнейшее углубление автоматизации производства, переоснащение современным оборудованием, его обрабатывающими многоосевыми центрами позволяющими создавать комплексноавтоматизированные гибкие производственные участки, обработку однотипных Использование ориентированные деталей. универсального оборудования с ручным управлением будет все более уменьшаться, до минимально возможного уровня - в перспективе возможен полный отказ от его использования, что будет определяться уровнем заготовительного производства - точностью получаемых отливок. Создание интегрированных производственных участков определит дальнейшую автоматизацию процесса подготовки производства и переход на сквозное проектирование изделий, оснастки и инструмента и создание PLM-систем. Сроки создания таких систем в каждом конкретном случае будет определяться номенклатурой, объемом выпуска, средней продолжительностью жизненного цикла изделий и тем уровнем затрат, которые готово нести каждое конкретное предприятие на создание системы и модернизацию производства. Это приведет к сокращению сроков освоения производства изделий и потребует более высокой квалификации инженерного и производственного персонала.

Современное машиностроительное производство предъявляет новые требования к подготовке специалистов. Для работы в условиях современного предприятия от выпускника высшего учебного заведения знание современного методов оборудования, инструмента, принципов проектирования И специального инструмента и оснастки, методики создания УП и программного обеспечения для разработки УП, CAD-систем, методики построения PLMтребований систем. Необходимо знание международных

современных методов обработки деталей, вспомогательных процессов и процессов получения заготовок.

© М.М. Кузнецов, М.С. Комбаров, 2010

УДК 535 3.Е. Алексеева, Л.Б. Воробьева СГГА, Новосибирск

ВЛИЯНИЕ ДЕФЕКТОВ ПОВЕРХНОСТИ ПЛАСТИНЫ СЕГНЕТОЭЛЕКТРИЧЕСКОГО КРИСТАЛЛА НА ДИФРАКЦИОННУЮ ЭФФЕКТИВНОСТЬ ЭЛЕМЕНТА ОПТИЧЕСКОЙ ПАМЯТИ

Изучено влияние дефектов формы поверхности элементов оптической памяти на основе ниобата лития на эффективность голографической записи информации. Получено простое соотношение между ошибками формы поверхности, толщиной пластины и допустимой величиной колебания дифракционной эффективности.

Z.E. Alekseeva, L.B. Vorobyeva Siberian State Academy of Geodesy (SSGA) 10 Plakhotnogo Ul., Novosibirsk, 630108, Russian Federation

INFLUENCE OF SEGNETOELECTRIC CRYSTAL PLATE DEFECTS ON THE DIFFRACTION EFFICIENCY OF OPTICAL MEMORY ELEMENTS

The influence of the surface shape defects of the optical memory elements based on the lithium niobate on the effectiveness of data holographic recording was study.

The simple correlation between surface shape defects, thickness of the plate and the permissible size of fluctuations of the diffraction efficiency was obtained.

В качестве регистрирующей среды для голографической записи и хранения информации используются сегнетоэлектрические кристаллы, в частности ниобаты и танталаты щелочных металлов. Явление изменения показателя лействием преломления пол света таких кристаллах электрооптическим эффектом. Одним из достоинств элементов оптической памяти на таких материалах является отсутствие эффекта усталости после множества циклов «запись-стирание». Однако эти кристаллы обладают и частности. величиной низкой голографической недостатками, Как чувствительности. оптические изделия элементы памяти сегнетоэлектрических кристаллов представляют собой квадратные пластины или диски диаметром от 10 до 40 мм и толщиной от сотен мкм до единиц мм. Отклонение от плоскостности пропускающей поверхности и рассеяние света в поверхностном слое монокристалла вследствие нарушения его кристаллической структуры являются, среди прочих других факторов, причиной снижения чувствительности к голографической записи информации.

Целью настоящей работы является исследование влияния качества обработки поверхности пластины из светочувствительного кристалла $LiNbO_3$ на

отношение сигнал-шум в восстановленных плоских волнах. В работе использовались пластины размером 10x10x0,1 мм, клиновидностью < 2'. Кристалл $LiNbO_3$ выращен из расплава конгруэнтного состава и имеет степень легирования железом 0,15 мас.%. Отклонение формы реальной поверхности от «идеальной» определяется погрешностью формы в интерференционных полосах (N) с местными ошибками (ΔN) .

Для выбора модели, описывающей механизм образования шумов голограммы, воспользуемся модовой теорией объемных пропускающих голограмм [1]. Считаем, что голограммы регистрируются двумя плоскими волнами и имеют пространственную частоту $f=1000~{\rm mm}^{-1}$. Считывание голограммы производится в процессе записи одним из пучков, информация регистрируется в объеме кристаллической пластины толщиной менее $100~{\rm mkm}$. Применение критериев модовой теории позволяет оценить геометрические параметры записывающих и освещающих волн, для которых описание механизма преобразования световых полей голограммой можно производить и по методам более простой в расчетном плане теории Когельника [2]. Согласно [1] теория Когельника может быть использована при выполнении условия

$$\alpha_{11} = \frac{\lambda_e}{2\overline{n}\pi(\Delta\theta)^2} > \frac{T}{\cos\theta_0},\tag{1}$$

где α_{11} — продольный размер неоднородностей записывающих волн; $\lambda_{\it g}$ — длина волны в вакууме; $\Delta \theta$ — расходимость записывающей и восстанавливающей волн; \bar{n} — средний показатель преломления голограммы; T — толщина голограммы; θ_0 — брэгговский угол. В противном случае, при $\alpha_{11} < \frac{T}{\cos \theta_0}$ необходимо использовать в расчетах аппарат модовой теории.

Для оценки влияния отклонения формы поверхности оптического элемента памяти на эффективность голографической записи воспользуемся критерием (1). Предположим, что при контроле световым пучком диаметром d наблюдается ошибка формы в $(N+\Delta N)$ интерференционных полос. Известно, что при этом величина геометрических искажений составляет $\Phi = \frac{\lambda_g}{2}(N+\Delta N)$.

Характерный поперечный размер геометрических неоднородностей Δx поверхности, для которых величина искажений достигает $\frac{\lambda_{\theta}}{\Delta}$, определим как

$$\Delta x = \frac{d}{2(N + \Delta N)}$$
, а расходимость волн в объеме кристалла, соответственно, как
$$\Delta \Theta = \frac{\lambda_e}{\Delta x} = \frac{2\lambda_e(N + \Delta N)}{d}.$$
 (2)

Подставляя (2) в (1), находим условие применимости теории Когельника:

$$\frac{\lambda_{e}d^{2}}{8\pi\overline{n}\lambda_{e}^{2}(N+\Delta N)} > \frac{T}{\cos\theta_{0}} \text{ или } \frac{(N+\Delta N)}{d} < \sqrt{\frac{\cos\theta}{8\pi\overline{n}\lambda_{e}T}} \,.$$

Для брэгговского угла в среде $\theta_0=30^\circ,~\lambda_g=0,5$ мкм, T=100 мкм, $\overline{n}=2,2$ находим $\frac{\left(N+\Delta N\right)}{d}=0,1$ мм $^{-1}$. Таким образом, при диаметре пучка в единицы миллиметров и величине $\left(N+\Delta N\right)$ до 10 интерференционных полос возможно применение модели Когельника.

Поскольку ошибки формы поверхности вызывают отклонение угла падения от угла Брэгга на величину $\Delta\theta$, определяемую по формуле (2), то получить 100 % дифракционную эффективность при наличии ошибок формы поверхности невозможно. На основании [1] отклонение угла падения от угла Брэгга определяется как

$$\Delta\theta = \frac{\xi\lambda_e}{2\pi\overline{n}T\sin\theta},\tag{3}$$

где ξ — коэффициент пропорциональности.

Максимальная величина дифракционной эффективности $\eta=100$ % достигается при $\xi=0$, а при $\xi=2,7$ η принимает нулевое значение. Подставляя (3) в (2) получим

$$(N + \Delta N) = \frac{\xi d}{2\pi \overline{n} T}.$$
 (4)

Подставляя в выражение (4) ξ = 1, d = 3 мм, \bar{n} = 2,2, T = 100 мкм, получим $(N + \Delta N)$ = 2, что при ξ = 1 соответствует уменьшению η на 20 % [3]. Таким образом, для голографических элементов памяти на основе ниобата лития допустимая величина ошибки формы поверхности в $(N + \Delta N)$ интерференционных полос на диаметре пучка 3 мм определяется как $(N + \Delta N)$ = $217\frac{\xi}{T}$, где T — толщина элемента, мкм, а ξ — параметр, определяемый [3] по допустимой величине изменения дифракционной эффективности.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Зельдович, Б.Я., Шкупов, В.В., Яковлева, Т.В. Теория объемных голограмм с наложенной записью. Материалы сборника «Проблемы оптической голографии». Л.: Наука, 1981. с. 80–97.
- 2. Kogelnik, H. Coupled wave Theory for Thick Hologram Gratings. Bell. Sist. Tehnic. J., 1969, v. 48, n. 9, p. 2909–2912.
- 3. Кольер, Р., Беркхар, Т., Лин, Л. Оптическая голография. М.: Мир, 1973. с. 686.

© З.Е. Алексеева, Л.Б. Воробьёва, 2010

УДК 681.7:681.2 *Е.Г. Бобылева* СГГА, Новосибирск

ИНТЕГРИРОВАННЫЕ ПРОИЗВОДСТВЕННЫЕ СИСТЕМЫ В ПРИБОРОСТРОЕНИИ

В данной статье рассмотрены технологические аспекты программы развития гибкого производства, включающие обработку резанием, сборку, контроль, программное обеспечение и направленные на снижение стоимости, стабильное извлечение прибыли и достижение технологических преимуществ.

Ye.G. Bobyleva SSGA, Novosibirsk

INTEGRATED PRODUCTION SYSTEMS IN INSTRUMENT-MAKING

The paper deals with the technological aspects of the flexible- production program development including cutting, assembly, control, software as well as steady profit-making and technological advantages aimed at the cost reduction.

В исследованиях, связанных с гибкими производственными системами, особое внимание привлекают к себе так называемые интегрированные производственные системы.

Для приборостроения особенно характерно среднесерийное производство, поэтому весьма важной задачей является рационализация его технологии. Для комплексного развития необходимо решение всех взаимосвязанных технологических проблем. При этом важно учитывать ряд технологических аспектов.

Например, чтобы на сборочной операции установить вал в отверстие, при механической обработке этого отверстия запоминаются положение его оси и диаметр. При обработке вала со станка также получается информация о диаметре этого вала и положении его оси. Эта совокупная информация обрабатывается и передается на сборочную позицию. Поскольку оба указанных вида работы выполняются во взаимосвязи и последовательно, производственный процесс в такой системе называют интегрированным.

Рассмотрим кратко некоторые проблемы интегрированных производственных систем.

Смысл интегрированных производственных систем заключается в объединении операций обработки и сборки, причем достижению этой цели способствует автоматизация процессов сборки. Такие системы могут быть построены по следующим различным принципам:

- Сборка осуществляется параллельно с обработкой, т. е. предварительно собранные детали могут возвращаться на дополнительную обработку и т. д.;
 - Сборка следует непосредственно за обработкой.

Поскольку оба эти варианта представляют собой интеграцию производства, то и системы, в которых используется такой способ производства, называются интегрированными производственными системами.

При использовании интегрированных производственных систем осуществляется эффективное сочетание всех функциональных возможностей на всех операциях от подачи материалов до выпуска готовых изделий.

Например, в среднесерийном производстве между операциями обработки и сборки не потребуется промежуточного складирования и не затратится дополнительное время на ожидание сборки. Обработка будет идти в соответствии с требованиями сборочного участка, и нужная деталь поступит на сборку в требуемое время. Поэтому детали будут обрабатываться комплектно в соответствии с требованиями сборочных процессов. Эти положения должны найти отражение в производственных заданиях, разрабатываемых в подобных системах.

Технологию обработки металлов резанием в интегрированных производственных системах можно изменять, но для обработки разнотипных деталей необходима высокая гибкость. При этом транспортные операции между станками должны быть доведены до минимума, даже если маршрут обрабатываемых деталей изменяется.

При практическом выборе металлорежущего оборудования для интегрированных систем необходимо учитывать следующие факторы:

- 1. Технология механообработки. Для выполнения множества видов обработки резанием нужно многоцелевое оборудование или оборудование, функции которого могут изменяться путем оснащения легко средствами. Одна тенденций развития дополнительными ИЗ производства заключается в развитии способов изменения функциональных возможностей оборудования. При этом функциональные возможности могут быть распределены между отдельными узлами, тогда все многообразие видов обработки обеспечивается быстрой сменой соответствующих узлов. Например, при организации смены инструментальных головок на функциональных узлах на одном рабочем месте может выполняться множество операций: точение, фрезерование, сверление, расточка, шлифование и др.
- 2. Измерение параметров деталей. Автоматические измерительные устройства, применяемые в интегрированных производственных системах, необходимо устанавливать непосредственно на металлорежущем оборудовании, чтобы параметры изготавливаемой детали можно было измерить в любой момент. Для повышения точности автоматических измерительных устройств, необходимо постоянно осуществлять их контроль и поверку, т. к. своевременное обнаружение снижения точности измерения или аномальных срабатываний измерительного устройства повышает надежность измерений.

- 4. Интенсификация режимов резания. Для интенсификация технологии резания необходимо:
- Применять способ автоматического управления подачей в зависимости от изменения тока нагрузки двигателя привода главного движения станка. По колебаниям тока можно судить об изменении условий резания. Например, при среднем увеличении нагрузки на 10 % время резания сокращается на 15%;
- Сокращать подготовительно-заключительное время. Например, при токарной обработке на станке с ЧПУ проверка данных, вводимых с электронных устройств вне станка, занимает в два раза меньше времени, чем эта процедура, выполняемая на самом станке. При этом происходит установление соответствия формата данных, соответствия применяемого инструмента обрабатываемой детали, правильность технологических переходов и соответствующих этапов формообразования по информации на дисплее;
- Проводить уборку стружки и стружкодробление. При черновой обработке нужно использовать способ искусственного прерывания подачи, при чистовой обработке возможны три способа: уборка стружки перед каждой технологической операцией, отвод сливной стружки и специальные меры по ее дроблению.
- 4. Техника зажима. Так как в гибких производственных системах обрабатываются изделия различной формы, необходимы зажимные приспособления, надежно зажимающие в станке эти изделия. Необходимо разрабатывать приспособления, которые не только смогут автоматически зажимать и корпусные детали, и детали типа тел вращения, но и оперативно заменять их.
- 6. Техника стабилизации точности. Чтобы обеспечить высокую точность обработки, в гибких производственных системах необходимо проводить проверку точности при передаче детали с одного станка на другой. При обработке корпусных деталей необходима проверка точности позиционирования на каждом модуле, поскольку обработка происходит с применением устройств автоматической смены инструмента и заготовок.

Что же касается сборочных работ, то они, как правило, ведутся на основе опыта и интуиции. Поэтому для автоматизации сборочных процессов необходимо решить множество технологических проблем.

В настоящее время автоматические линии работают по принципу «каждой операции – свой станок». Для сборочных операций это неприемлемо из-за неэффективности, и совершенно ясно, что это было бы чрезвычайно сложной задачей. Поэтому нужно использовать такой способ, при котором бы на одном рабочем месте детали собирались в определенном порядке. В этом случае экономится время на транспортирование, снижаются требования к точности позиционирования, к установке различных датчиков, сокращается количество рук сборочных манипуляторов и расширяются потенциальные возможности сборочных машин. Например, для распределения деталей на рабочем месте сортировочное устройство, может применяться имеющее камеру фотоэлементами. Детали поступают на специальную площадку камеры,

аттестуются и устанавливаются в кассеты, которые направляются в сборочную установку для выполнения операций.

Основными операциями процесса сборки являются сопряжение (вставка), запрессовка и завинчивание, которые составляют до 90 % трудоемкости всей сборки. Эти операции зависят от следующих факторов:

- 1. Точности установки деталей (несоосность, угол наклона);
- 2. Точности геометрических размеров сопрягаемых деталей (например, при посадке подшипника на вал);
- 3. Типа применяемого инструмента и возникающих при сборке рабочих усилий.

Поэтому в состав сборочной машины, применяемой в гибких производственных системах, необходимо использовать высокоточные манипуляторы для вставки и запрессовки. Причем их конструкция должна быть такова, что эти узлы можно было бы менять. Для позиционирования при сборке нужно применять устройства ЧПУ.

В современных интегрированных производственных системах отдельные устройства управления децентрализованы и соединены в иерархическую сеть, структура которой может изменяться в зависимости от производственной ситуации. Поэтому необходимо применять одно управляющее устройство, состоящее из функциональных узлов и отдельных блоков управления, которые могли бы автоматически переключаться в нужный режим при работе. В целях расширения возможностей обработки целесообразно использовать блоки широкого назначения.

Принцип работы таких управляющих систем следующий: программы обработки, управляющие данные и другая информация из центрального устройства управления интегрированной системы поступают в управляющие устройства зон обработки, откуда управляющая информация распределяется по блокам управления каждой координаты. На основе данных, поступивших в блоки управления, ведутся сервисное управление и контроль работы приводов.

Выполнение выше изложенных аспектов развития интеграционных систем приведет к снижению стоимости изделий, стабильному извлечению прибыли и достижению технологических и организационных преимуществ.

© *Е.Г. Бобылева*, 2010

УДК 378 Ю.А. Голиков СГГА, Новосибирск

БОЛЬШЕ ВНИМАНИЯ ПРОФИЛЬНЫМ КЛАССАМ!

В статье рассмотрены трудности, с которыми сегодня сталкиваются учреждения высшего и среднего профессионального образования при наборе и обучении студентов, и предложены меры по активизации профильного обучения в школах с участием профессорско-преподавательского состава вузов и колледжей.

Yu.A. Golikov SSGA, Novosibirsk

MORE ATTENTION TO SPECIALIZED CLASSES!

The problems of training students faced by the institutions of tertiary education are considered. The measures on stimulating specialized education at school, with some subjects being taught by the teaching staff of higher schools and colleges are offered.

Анализ экономической информации за 2008 -2010 гг. убеждает нас в том, что кризис в России скорее не финансовый, а системный. Он достачно глубокий даже в федеральных и региональных государственных структурах, и по оценкам экономистов будет продолжаться не менее 3 лет. Вследствие дефицита государственного бюджета Российской Федерации профессиональное образование в целом: начальное, среднее и высшее в 2010 году ожидает снижение бюджетного финансирования на уровне выше 2009 года. Еще более ощутимый удар будет нанесен в текущем году коммерческой составляющей профессиональных образовательных учреждений по двум причинам:

- Из-за падения платежеспособного спроса большей части населения страны;
- Из-за продолжающегося демографического спада числа школьников выпускников 2010 года.

Оба вышеуказанные обстоятельства приведут к жесткой ситуации для большинства вузов, колледжей и профессиональных училищ: сокращению бюджетного финансирования на 3 - 5 % и снижению внебюджетных поступлений за счет коммерческой составляющей на 30÷50%.

Провозглашенный Президентом РФ переход к модернизации отечественной экономики и внедрению инноваций во все отрасли хозяйства страны означает для всех учебных заведений - необходимость повышения

количества и качества подготовки специалистов для промышленных отраслей. Выходом из создавшейся ситуации для них могло бы стать принятие поправок в «Закон об образовании», по которым школы, профессиональные училища, колледжи, вузы и предприятия могли бы взаимодействовать по договорам, представляя друг другу учебные и производственные помещения, лаборатории, установки и оборудование, а также кадры на безвозмездной или платной основе, как это делают научные учреждения и вузы страны.

Вторым решением, облегчающим работу профессиональных учебных заведений высшего и среднего специального образования, могла бы стать приостановка давления Министерства образования и науки на них в направлении смены их организационно – правовой формы в виде автономных учреждений.

Третьим предложением, облегчающим выбор абитуриентам профессии и конкретного высшего или среднего образовательного учреждения, могло бы стать повышение персональной ответственности ректоров и директоров за трудоустройство своих выпускников. Процесс обучения студентов не должен заканчиваться сегодня выдачей дипломов, а должен продолжаться оказанием колледжем каждому молодому помощи вузом или трудоустройстве освоении профессии. Для ЭТОГО необходимо И В активизировать работу выпускающих кафедр высших средних профессиональных учебных заведений с аттестованными специалистами, а также создать сеть филиалов кафедр на предприятиях- работодателях.

Четвертым направлением, которое бы содействовало внесению ясности в действия руководителей высших и средних профессиональных учебных эксперименте заведений, участвующих В созданию прикладного бакалавриата образовательных учреждениях высшего среднего профессионального образования, явилось бы разъяснение Министерством образования и науки с помощью средств массовой информации населению статуса квалификации «бакалавр техники и технологии». Это кто: инженер, техник? И на какую должность он может рассчитывать, после окончания вуза или колледжа при приеме на работу на предприятии?

Становление рыночной экономики в РФ привело также к обострению противоречия между массовостью школьного профессионального И образования, охватывающего учащихся И студентов разных возрастов, способностей и интересов, и возрастающими требованиями со стороны предпринимательского сектора индивидуализации обучения К (многоступенчатый отбор персонала). Это противоречие должно устраняться на двух уровнях:

- В вузе или колледже при организации прохождения практик студентов в будущих местах их работы, а также организацией филиалов кафедр на предприятиях работодателях;
- В школах и в профессионально технических училищах путем организации профильного обучения.

В традиционной педагогике всегда большое внимание уделялось работе учителей, и поэтому сегодня большинство инноваций ориентировано на преподавательский состав школ. К выпускнику школы со стороны учителей предъявляются повышенные требования: он должен не только усвоить школьную программу, но и уметь вырабатывать новые знания и методы поведения в сложных ситуациях экономического кризиса в стране. При этом обнаруживается несоответствие между ростом информации и возможностью молодого человека усвоить этот объем знаний, то есть налицо- перегруженность школьных программ.

Социологические исследования, проведенные, среди школьников в различных областях Российской Федерации, показали, что большая часть учащихся 10- 11 классов приспосабливается к этой ситуации путем освоения основ образовательных дисциплин и углубленного изучения только тех, в которых им хотелось бы специализироваться. Собственный опыт автора этой статьи в общении с учащимися школ города Бердска Новосибирской области подтверждает, что у многих из них в настоящее время не сформирована потребность в своем дальнейшем саморазвитии и получении дальнейшего профессионального образования после окончания школы.

Сегодня большинстве ШКОЛ HCO профильное образование ориентировано на экономические, юридические гуманитарные И специальности, но программа модернизации отечественной экономики, в первую очередь, требует подготовки специалистов: инженеров, техников и рабочих по техническим и технологическим профессиям. профильном, обучении на всех ступенях общеобразовательной школы, и в особенности в 9-х классах, в настоящее время стоит главная задача переориентация части школьников с гуманитарного на естественно – научное направление. «Иначе нам удачи (на пути модернизации отечественной экономики) не видать!»

Итоги социальной оценки введения профильного обучения в Санкт-Петербурге показывают, что «общее непрофильное образование не согласуется с учебной мотивацией старшеклассников, которые не связывают свои интересы в учебе с будущим профессиональным образованием». В связи с тем, что на рынке образовательных услуг в Новосибирской области имеет место острая конкуренция высших, средних и начальных профессиональных учебных заведений, имеет смысл активнее выходить на него с предложениями по профориентационным дисциплинам направлений обучения в Сибирской государственной геодезической академии. Ректорату ГОУ СГГА необходимо срочно активизировать работу деканатов, отделений и всех кафедр для завоевания своего сектора на этом рынке всеми доступными законными средствами. Особое внимание следует уделить рекламе нового направления подготовки бакалавров техники и технологии «Инноватика», в становлении Сибирской заинтересованы кафедры которого все государственной геодезической академии, и которое станет в ближайшем будущем одним из востребованных на рынке промышленных профессий Новосибирской области и Западной Сибири.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Мау, В. Экономическая политика 2009 года: между кризисом и модернизацией // Вопросы экономики. 2009. № 2. С. 4–25.
- 2. Цепков, А.С. Кризис и федеральная система профессионального образования // Администратор образования. 2009. № 5. С. 4–6.
- 3. Модернизация российского образования: документы и материалы. M.: Библиотека развития образования, $\Gamma Y B \coprod 9$, 2002. 365 с.
- 4. Теория и практика организации предпрофильной подготовки/под. ред. Т.Г. Новиковой. М.: АПК и ПРО, 2003. C. 30-35.
- 5. Петрунина, И.А. Профориентация школьников в условиях профильного обучения// Администратор образования. 2009. № 19. С. 7–11.
- 6. Кривых, С.В. Успехи и неудачи профильного обучения: опыт большого города / С.В. Кривых, И.Ю. Алексашина // Администратор образования. 2009. N 18. С. 3—12.

© Ю.А. Голиков, 2010

УДК 681.7 *А.А. Марач* СГГА, Новосибирск

СТАНОВЛЕНИЕ ОРГАНИЗАЦИИ ПРОИЗВОДСТВА В РОССИИ

В статье представлены основные этапы становления организации производства как науки в России.

A.A. Maratch SSGA, Novosibirsk

PRODUCTION MANAGEMENT FORMATION IN RUSSIA

Main stages of production management formation as a science in Russia is considered.

Организация производства как наука, начала формироваться в России с конца XIX века. В 1873 г. Московское высшее техническое училище (МГТУ) получило "медаль преуспеяния" на Всемирной торговой выставке, проходившей в Вене за методику рационализации трудовых процессов,

Одним из основателей науки в России признан инженер К. Адамецкий (1866—1933), сформулировавший четыре закона организации производства и труда: закон возрастающего производства; закон специализации; закон объединения мелких единиц в одну группу; закон гармонии труда.

Закон возрастающего производства говорит о росте общих затрат ресурсов предприятия (материальных, трудовых, финансовых), они увеличиваются в том случае, когда затраты на единицу продукции сокращаются до определенных пределов. Этот закон стал предпосылкой одной из форм организации производства - концентрации.

Закон специализации (разделение труда) — это также одна из форм организации производства. Адамецкий считал, что специализация ведет к росту производительности труда.

Третий закон Адамецкого – комбинирование производства, имеющее неограниченные экономические преимущества.

Закон о гармонии труда, помогал управлять общими затратами на предприятии за счет производительности каждого из взаимосвязанных подразделений и соответствующей пропускной способности других подразделений, входящих в одну цепочку производственного процесса. В настоящее время это положение Адамецкого трактуется как принцип пропорциональности.

В советский период было выделено четыре этапа развития науки и практики организации производства и управления:

1920-е гг. – период поиска новых форм и методов управления;

1930–1950-е гг. период формирования жесткой модели и централизация государственного управления;

1960–1970-е гг. – период проведения частичных реформ и заимствование элементов капиталистической экономики;

1980–1990-е гг. – отказ от социалистических преобразований и попытки посредством реформ, проводимых сверху, создать современную рыночную экономику.

Самым результативным стал первый этап, поскольку были сформированы два направления отечественного менеджмента: организационно-технические и социальные концепции управления. Сторонниками организационно-технических концепций были А.А. Богданов, О.А. Ерманский, А.К. Гастев, сторонниками социальных концепций – П.М. Керженцев, Н.А. Витке и Ф.Р. Дунаевский.

В эти годы в стране были созданы первые научные институты по решению проблем в области организации труда и производства, – Центральный институт Таганрогский институт организации труда И производства, Всероссийский институт труда, Казанский институт научной организации труда специализированные другие. Были выпущены первые "Предприятие", "Вопросы организации И управления", "Системы организация", "Организация труда". Множество работ 1920-х годов ученые посвятили конкретным проблемам организации производства, работы первой половины 1930-х, напротив, носили больше комплексный характер.

Ряд ученых (Н.А. Аносов, Ф.Р. Дунаевский, М.Н. Липский) обосновали необходимость выделения организации и управления производством как науки, и возможности её использования в практической деятельности. Было сформулировано понятие организационного процесса, определены его основные фазы. Большая группа ученых: Е.М. Альперович, М.И. Васильев, И.С. Лавров и другие, работали над решением проблем организации производства и управления в рамках отдельного предприятия.

Выдающийся ученый — естествоиспытатель, философ, экономист А.А. Богданов (1873–1920) выделил общие черты всех видов управления в природе, технике и обществе. Исходя из этого, он разработал основные принципы новой науки о законах организации, действующих в технике (организация вещей), экономике (организация людей), политике (организация идей), и заявил о необходимости их изучения. Многие положения, выдвинутые А.А. Богдановым, предвосхитили становление кибернетики, теории систем, современной теории организации.

Фундаментальными работами, опубликованными в 1920–1930 гг., считается книга под редакцией Б.Я. Каценбогена и Д.Т. Тобиаса "Методика расчета серийного производства", книга П. В. Крепыша "Структура и расчет деятельности производственного цикла", книга С.А. Думлера "Основы расчета величины наивыгодной партии".

Занимаясь поиском новых методов проектирования и организации процессов производства, труда и управления в реальных условиях на предприятии, сотрудники Центрального института труда под руководством

Гастева разработали концепцию трудовых установок. В концепцию этой теории вошли: движения в производственном процессе, организация рабочего места, организация управленческих процессов, методика обучения.

А.К. Гастев (1882–1941) разработал концепцию "узкой базы", и считал, что труд любого работника можно разложить на операции, которые можно регулировать наравне с операциями, выполняемыми на станке.

О.А. Ерманский (1866–1941) разработал методологию рационализации производства в отрасли машиностроения, основанную на комплексном подходе, сформулировал предмет науки об организации труда и управления, заложив в основу идею об оптимизации использования всех видов энергии и факторов производства. Особое значение он придавал закону организационной суммы, которая больше арифметической суммы входящих в нее сил, но возможно это лишь при условии, гармоничного сочетания всех вещественных и личных элементов производства усиливающих друг друга. Что стало предпосылками закона синергии.

Закон синергии позволил Ерманскому сформулировать главный принцип теории рационального управления — физиологического оптимума. В основу этого критерия легло сопоставление израсходованной энергии и полученного эффекта, выраженное в виде коэффициента рациональности (Полезный результат/Затраты энергии).

Сторонник социальных концепций организации производства И управления Керженцев, выделял производство три элемента: И управление. Он занимался изучением организационных приемов И определением рациональных методов выполнения управленческих действий, организационных формирование структур, распределение таких как обязанностей, планирование, учет, подбор использование И поддержание дисциплины. Позднее ему удалось сформулировать принципы управления это - установление целей и задач, выбор формы организации, составление планов, учет и контроль, координацию использования людских и материальных ресурсов.

Н.А. Витке представлял управление как процесс, вобравший в себя систему социальных и трудовых отношений и реальную деятельность людей, в которой эти отношения воплощаются. Все эти элементы процесса управления объединены административной функцией, вошедшей в "социально-трудовую концепцию управления производством".

Ф.Р. Дунаевский в своей теории "административной емкости" писал, что с развитием производства происходит разбухание промежуточных звеньев, связанное с потребностью компенсации превышения "административной емкости" центра и предложил способы преодоления разросшегося информационного барьера.

Научно — методическая база, подготовленная отечественными учеными и как результат этой работы создание институтов, публикации статей, выпуск специализированных журналов, явились становлением науки «Организация производства» и в России.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Крепыш, П.В. Структура и расчет производственного цикла. М.: ОНТИ, 1995.-308 с.
- 2. Думлер, С.А. Новые математические методы и модели в планировании и организации производства. М.: Машин, 1962. 356 с.
- 3. История менеджмента: учеб. пособие / под ред. Д.В. Валового. М.: ИНФРА-М, 1977. 256 с.
- 4. История экономических учений: учеб. пособие / А.В. Горшков. Челябинск: гос. ун-т, 2008. 239 с.

© А.А. Марач, 2010